BESSY II: Einfluss von Protonen auf Wassermoleküle

An BESSY II konnten die spektralen Fingerabdr&uuml;cke von Wassermolek&uuml;le untersucht werden. Das Ergebnis: die elektronische Struktur der drei innersten Wassermolek&uuml;le in einem H<sub>7</sub>O<sub>3</sub><sup>+</sup>-Komplex wird durch das Proton drastisch ver&auml;ndert. Dar&uuml;ber hinaus ver&auml;ndert sich auch die erste Hydrath&uuml;lle aus f&uuml;nf weiteren Wassermolek&uuml;len, die das Proton &uuml;ber sein langreichweitiges elektrisches Feld wahrnimmt.

An BESSY II konnten die spektralen Fingerabdrücke von Wassermoleküle untersucht werden. Das Ergebnis: die elektronische Struktur der drei innersten Wassermoleküle in einem H7O3+-Komplex wird durch das Proton drastisch verändert. Darüber hinaus verändert sich auch die erste Hydrathülle aus fünf weiteren Wassermolekülen, die das Proton über sein langreichweitiges elektrisches Feld wahrnimmt. © MBI

Wie Wasserstoff-Ionen oder Protonen mit ihrer wässrigen Umgebung wechselwirken, hat große Praxisrelevanz, ob in der Technologie von Brennstoffzellen oder in den Lebenswissenschaften. Nun hat ein großes internationales Konsortium an der Röntgenquelle BESSY II diese Frage experimentell im Detail untersucht und neue Effekte entdeckt. So verändert die Anwesenheit eines Protons die elektronische Struktur der drei innersten Wassermoleküle, wirkt sich aber außerdem auch noch darüber hinaus über ein langreichweitiges Feld auf eine Hydrathülle aus fünf weiteren Wassermolekülen aus.

Überschüssige Protonen in Wasser sind komplexe Quantenobjekte mit starken Wechselwirkungen mit dem dynamischen Wasserstoffbrückenbindungsnetz der Flüssigkeit. Diese Wechselwirkungen sind überraschend schwer zu untersuchen. Dabei spielt die so genannte Protonenhydratisierung eine zentrale Rolle beim Energietransport in Wasserstoffbrennstoffzellen und bei der Signalübertragung in Transmembranproteinen. Während die Geometrien und Stöchiometrien sowohl in Experimenten als auch in der Theorie umfassend untersucht wurden, ist die elektronische Struktur dieser hydratisierten Protonenkomplexe nach wie vor ein Rätsel.

Elektronische Struktur von Protonen in Lösung

Eine große Kooperation aus Gruppen des Max-Born-Instituts, der Universität Hamburg, der Universität Stockholm, der Ben-Gurion-Universität und der Universität Uppsala hat nun neue Erkenntnisse über die elektronische Struktur hydratisierter Protonenkomplexe in Lösung gewonnen.

Wechselwirkungen mit kurzer und längerer Reichweite

Mit Hilfe der neuartigen Flatjet-Technologie führten sie an BESSY II röntgenspektroskopische Messungen durch und kombinierten sie mit Infrarotspektralanalyse und Berechnungen. Dadurch ließen sich zwei wesentliche Effekte unterscheiden: Lokale Orbital-Wechselwirkungen bestimmen die kovalente Bindung zwischen dem Proton und benachbarten Wassermolekülen, während Orbital-Energie-Verschiebungen die Stärke des ausgedehnten elektrischen Feldes des Protons messen. Die Ergebnisse legen eine allgemeine Hierarchie für die Protonenhydratation nahe: Das Proton interagiert mit drei Wassermolekülen und bildet einen H7O3+-Komplex. Die Hydratschale dieses Komplexes wird durch das elektrische Feld der positiven Ladung des Protons beeinflusst.

Mögliche Anwendungen

Die neuen Forschungserkenntnisse haben direkte Auswirkungen auf das Verständnis der Protonenhydratation von Protonen in wässriger Lösung über Protonenkomplexe in Brennstoffzellen bis hin zur Wasserstruktur-Hydratationstaschen von Protonenkanälen in Transmembranproteinen.

Eine längere Meldung dazu können Sie auf der Seite des Max-Born-Instituts lesen>

 

MBI/arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.