Photokatalyse: Prozesse bei der Ladungstrennung experimentell erfasst

Contour Plot von EH-Cu<sub>2</sub>O. Die Photospannungen sind abh&auml;ngig von Photonenenergie (x-Achse) und Zeit (Y-Achse) aufgetragen. Positive SPV-Signale (lila Bereiche oberhalb von 1.9 eV) entsprechen der Relaxation von auf {111}-Facetten eingefangenen L&ouml;chern, wohingegen negative SPV-Signale (rote Bereiche) der Relaxation von auf {001}-Facetten eingefangenen Elektronen entsprechen.</p> <p>

Contour Plot von EH-Cu2O. Die Photospannungen sind abhängig von Photonenenergie (x-Achse) und Zeit (Y-Achse) aufgetragen. Positive SPV-Signale (lila Bereiche oberhalb von 1.9 eV) entsprechen der Relaxation von auf {111}-Facetten eingefangenen Löchern, wohingegen negative SPV-Signale (rote Bereiche) der Relaxation von auf {001}-Facetten eingefangenen Elektronen entsprechen.

© HZB

Bestimmte Metalloxide gelten als gute Kandidaten für Photokatalysatoren, um mit Sonnenlicht grünen Wasserstoff zu produzieren. Ein chinesisches Team hat nun in Nature spannende Ergebnisse zu Kupfer(I)oxid-Partikeln veröffentlicht, zu denen eine am HZB entwickelte Methode erheblich beigetragen hat. Die transiente Oberflächen-Photospannungs-Spektroskopie zeigte, dass positive Ladungsträger an Oberflächen im Laufe von Mikrosekunden durch Defekte eingefangen werden. Die Ergebnisse geben Hinweise, um die Effizienz von Photokatalysatoren zu steigern.

Die Aufspaltung von Wasser in Wasserstoff und Sauerstoff mit Hilfe von photokatalytisch aktiven Partikeln könnte künftig preiswert grünen Wasserstoff produzieren: Mit Sonnenlicht werden in Photokatalysatoren Ladungsträger aktiviert, deren räumliche Trennung bei der photokatalytischen Wasserspaltung eine entscheidende Rolle spielt. Allerdings sind heutige Photokatalysatoren noch entweder sehr teuer oder wenig effizient.

Metalloxidpartikel als Katalysatoren

Metalloxidpartikel gelten als günstige Kandidaten mit großem Potential: Bei der Aktivierung von Ladungsträgern durch Licht überlagern sich jedoch mehrere Prozesse, die mit unterschiedlichen Geschwindigkeiten und auf verschiedenen räumlichen Skalen stattfinden. Um solche Prozesse experimentell zu beobachten, werden Methoden benötigt, die Zeitauflösungen bis hinunter zu Femtosekunden bieten, aber auch längere Prozesse beobachten können, die innerhalb von Mikrosekunden und langsamer ablaufen. An mikrokristallinen Kupfer(I)oxid-Partikeln hat dies nun ein Team um Fengtao Fan und Can Li aus dem Dalian National Laboratory for Clean Energy, China, geschafft. Die Ergebnisse sind so interessant, dass Nature die Arbeit publizierte und redaktionell hervorgehoben hat.

Schnelle Wanderung der Elektronen

Mit rasch aufeinanderfolgenden mikroskopischen Aufnahmen der zeitaufgelösten Photoemissions-Elektronen-Mikroskopie zeigten sie, dass einer dieser Prozesse in den Cu2O-Partikeln extrem schnell abläuft – in weniger als Pikosekunden (10-12 s): Nach Anregung mit Licht werden Elektronen quasi ballistisch auf {001}-Facetten von Cu2O-Partikeln übertragen.

Langsamer Einfang von "Löchern"

Um einen zweiten Prozess experimentell zu beobachten, war jedoch eine andere Methode erforderlich: Denn photogenerierte „Löcher" wandern zu den {111}-Facetten und werden dort durch Defekte eingefangen. Diesen wichtigen Prozess konnte Thomas Dittrich mit Transienter Oberflächenphotospannungs-Spektroskopie (SPV-Spektroskopie) beobachten, einer von ihm am HZB entwickelten Methode. „Wir stellten fest, dass der Löchereinfang relativ langsam stattfand, im Lauf von Mikrosekunden“, erklärt er.

Hohe Zeit- und Ortsauflösung

Zusammengenommen ermöglichen die Ergebnisse erstmals, Prozesse, die die Photokatalyse limitieren, auf mikrokristallinen Partikeln mit hoher Orts- und Zeitauflösung über weite Bereiche zu untersuchen und besser zu verstehen.

Vielseitige Methode mit breitem Einsatzbereich

„Mit der Transienten SPV-Spektroskopie können wir auch andere Halbleiter und Grenzflächen untersuchen, die z.B. für Anwendungen von der Photovoltaik über die Photokatalyse bis zur Hochleistungselektronik relevant sind“, sagt Dittrich. Auch an organischen Halbleitern oder Ultrabreitband-Halbleitern wie Diamant lassen sich interessante Einsichten in Relaxationsprozesse gewinnen. „Vielleicht kann unsere Publikation in Nature dazu führen, diese vielseitige Methode bekannter zu machen“, sagt Dittrich.

Lehrbuch: “Materials Concepts for Solar Cells”, Imperial College Press (2014), ‎552 Seiten. ISBN: 978-1783264445

Im Lehrbuch von Thomas Dittrich und Steffen Fengler wird die Methode der SPV-Spektroskopie ausführlich vorgestellt.


arö


Das könnte Sie auch interessieren

  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.