BESSY II: Lokalisierung von d-Elektronen vermessen

An BESSY II lässt sich mit Auger-Photo-Electronen-Coinzidenz Spektroskopie (APECS) die Lokalisierung von d-Elektronen in Kobalt im Vergleich zu Nickel und Kupfer präzise ermitteln.

An BESSY II lässt sich mit Auger-Photo-Electronen-Coinzidenz Spektroskopie (APECS) die Lokalisierung von d-Elektronen in Kobalt im Vergleich zu Nickel und Kupfer präzise ermitteln. © adobestock

Übergangsmetalle besitzen vielfältige Anwendungen als Werkstoffe und in der Elektrochemie und Katalyse. Um ihre Eigenschaften zu verstehen, ist das Wechselspiel zwischen atomarer Lokalisierung und Delokalisierung der äußeren Elektronen in den d-Orbitalen entscheidend. Diesen Einblick ermöglicht nun eine besondere Messmethode an BESSY II mit höchster Präzision. Eine Studie an Kupfer, Nickel und Kobalt kommt dabei zu quantitativen Erkenntnissen. Die Royal Society of Chemistry hat den Beitrag als HOT Article 2022 ausgewählt.

Übergangsmetalle und Buntmetalle wie Kupfer, Nickel oder Kobalt eignen sich nicht nur als Werkstoffe, sondern auch für vielfältigste Anwendungen in der Elektro-Chemie und -Katalyse. Ihre besonderen chemischen und physikalischen Eigenschaften hängen mit der Besetzung der äußeren d-Orbitalschalen rund um die Atomkerne zusammen. Die energetischen Niveaus der Elektronen sowie ihre Lokalisierung oder auch Delokalisierung lassen sich hervorragend an der Röntgenquelle BESSY II untersuchen.

Kupfer, Nickel, Kobalt

Das Team des Uppsala-Berlin Joint Lab (UBjL) um Prof. Alexander Föhlisch und Prof. Nils Mårtensson hat nun neue Messungen an Kupfer- Nickel- und Kobaltproben veröffentlicht. Dabei bestätigten sie bekannte Befunde zu Kupfer, dessen d-Elektronen atomar lokalisiert sind, sowie für Nickel, in welchem lokalisierte mit delokalisierten Elektronen koexistieren. Beim Element Kobalt, welches für Batterien und als Legierung in Brennstoffzellen eingesetzt wird, waren bisherige Befunde jedoch widersprüchlich, da die Messgenauigkeit nicht ausreichte, um klare Aussagen zu treffen.

Hochempfindliche Spektrometer

An der Röntgenquelle BESSY II, die leistungsstarke Synchrotronstrahlung bietet, hat das Uppsala-Berlin joint Lab ein Instrument mit der erforderlichen Präzision aufgebaut. Mit der Auger-Photo-Elektronen-Coinzidenz-Spectroskopie (APECS) lassen sich hier die elektronische Lokalisierung bzw. Delokalisierung messen. Das deutsch-schwedische Team entwickelte dafür die „Angle resolved Time of Flight“ (ArTOF) Elektronenspektrometer, deren Nachweiseffizienz die von standardisierten hemisphärischen Analysatoren um Größenordnungen übertrifft. Ausgerüstet mit zwei ArTOF Elektronenspektrometern ist die von UBjL Wissenschaftler Dr. Danilo Kühn betreute Experimentstation CoESCA@UE52-PGM weltweit einzigartig.

Methode steht auch Messgästen zur Verfügung

Beim Element Kobalt zeigten nun die Messungen, dass die d-Elektronen des Kobalts als hochgradig delokalisiert anzusehen sind. „Dies ist ein wichtiger Schritt für eine quantitative Bestimmung elektronischer Lokalisation an einer Vielzahl von Werkstoffen, Katalysatoren und (elektro)chemischen Prozessen“, sagt Föhlisch.

Die Royal Society of Chemistry hat den Beitrag daher als HOT Article 2022 ausgewählt, auch mit der Intention, dass diese Messmethode breites Interesse in der Forschung weckt. Die Endstation steht auch internationalen Messgästen an BESSY II zur Verfügung, die sich zweimal jährlich um Messzeit bewerben können.

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.