Alexander Gray kommt als Humboldt-Fellow ans HZB 

Alexander Gray (hier in seinem Labor an der Temple Universität in Philadelphia, USA) will die Zusammenarbeit mit dem Team von Florian Kronast an BESSY II verstärken.

Alexander Gray (hier in seinem Labor an der Temple Universität in Philadelphia, USA) will die Zusammenarbeit mit dem Team von Florian Kronast an BESSY II verstärken. © Privat

Alexander Gray von der Temple University in Philadelphia, USA, arbeitet gemeinsam mit dem HZB-Physiker Florian Kronast an der Erforschung neuartiger 2D-Quantenmaterialien an BESSY II. Mit dem Stipendium der Alexander von Humboldt-Stiftung kann er diese Zusammenarbeit nun vertiefen. Bei BESSY II will er tiefenaufgelöste röntgenmikroskopische und -spektroskopische Methoden weiterentwickeln, um 2D-Quantenmaterialien und Bauelemente für neue Informationstechnologien zu untersuchen. 

Topologische Isolatoren und Weyl-Semimetalle gehören zu den spannendsten Materialklassen für Quantenbauelemente. Sie zeichnen sich dadurch aus, dass sie an den Oberflächen und Grenzflächen andere (elektronische und magnetische) Eigenschaften haben als im Volumen. Alexander Gray ist Experte auf diesem Gebiet und kommt häufig für kurze Messperioden zu BESSY II, wo er mit Florian Kronast zusammenarbeitet.

Als Stipendiat der Alexander von Humboldt-Stiftung kann der amerikanische Physiker nun regelmäßige Gastaufenthalte am HZB im Team von Florian Kronast und am Forschungszentrum Jülich im Team von Claus Schneider finanzieren. "Mit dem Humboldt-Stipendium haben wir mehr Zeit, um zu untersuchen, wie das Zusammenspiel von Oberflächen-, Grenzflächen- und Volumeneigenschaften in Quantenmaterialien zu neuartigen Phänomenen führt, die auch Anwendungen als Bauelemente  ermöglichen", sagt er. 

Gray leitet ein Team an der Temple University in Philadelphia und wird auch seine Studenten zu BESSY II schicken. "Wir wollen neue Techniken entwickeln, um die elektronischen und magnetischen Eigenschaften von 2D-Quantenmaterialien und Quantengeräten zu analysieren", umreißt er seine Ziele. Bei BESSY II wird Gray zu diesem Zweck vor allem die tiefenaufgelöste Stehwellen-Photoemissionsmikroskopie weiterentwickeln. Kronast, Gray und sein ehemaliger Doktorvater Chuck Fadley haben diese Methode bereits mit der Anregung durch stehende Röntgenwellen kombiniert, um eine bessere Tiefenauflösung zu erreichen (SW-PEEM). 

Ab Mitte August plant Alexander Gray den ersten Aufenthalt an BESSY II. Er freut sich nicht nur auf Messungen und Gespräche, sondern auch auf die typische Berliner Atmosphäre: "Die Menschen sind sehr offen und freundlich, und die berühmte "Berliner Schnauze" ist mir noch nie begegnet. Ich denke, wenn ich eines Tages so eine typische raue Antwort erlebe, habe ich sie vielleicht verdient." Mit dieser humorvollen Einstellung wird sein Aufenthalt in Berlin sicher in jeder Hinsicht ein Erfolg.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.