Alexander Gray kommt als Humboldt-Fellow ans HZB 

Alexander Gray (hier in seinem Labor an der Temple Universität in Philadelphia, USA) will die Zusammenarbeit mit dem Team von Florian Kronast an BESSY II verstärken.

Alexander Gray (hier in seinem Labor an der Temple Universität in Philadelphia, USA) will die Zusammenarbeit mit dem Team von Florian Kronast an BESSY II verstärken. © Privat

Alexander Gray von der Temple University in Philadelphia, USA, arbeitet gemeinsam mit dem HZB-Physiker Florian Kronast an der Erforschung neuartiger 2D-Quantenmaterialien an BESSY II. Mit dem Stipendium der Alexander von Humboldt-Stiftung kann er diese Zusammenarbeit nun vertiefen. Bei BESSY II will er tiefenaufgelöste röntgenmikroskopische und -spektroskopische Methoden weiterentwickeln, um 2D-Quantenmaterialien und Bauelemente für neue Informationstechnologien zu untersuchen. 

Topologische Isolatoren und Weyl-Semimetalle gehören zu den spannendsten Materialklassen für Quantenbauelemente. Sie zeichnen sich dadurch aus, dass sie an den Oberflächen und Grenzflächen andere (elektronische und magnetische) Eigenschaften haben als im Volumen. Alexander Gray ist Experte auf diesem Gebiet und kommt häufig für kurze Messperioden zu BESSY II, wo er mit Florian Kronast zusammenarbeitet.

Als Stipendiat der Alexander von Humboldt-Stiftung kann der amerikanische Physiker nun regelmäßige Gastaufenthalte am HZB im Team von Florian Kronast und am Forschungszentrum Jülich im Team von Claus Schneider finanzieren. "Mit dem Humboldt-Stipendium haben wir mehr Zeit, um zu untersuchen, wie das Zusammenspiel von Oberflächen-, Grenzflächen- und Volumeneigenschaften in Quantenmaterialien zu neuartigen Phänomenen führt, die auch Anwendungen als Bauelemente  ermöglichen", sagt er. 

Gray leitet ein Team an der Temple University in Philadelphia und wird auch seine Studenten zu BESSY II schicken. "Wir wollen neue Techniken entwickeln, um die elektronischen und magnetischen Eigenschaften von 2D-Quantenmaterialien und Quantengeräten zu analysieren", umreißt er seine Ziele. Bei BESSY II wird Gray zu diesem Zweck vor allem die tiefenaufgelöste Stehwellen-Photoemissionsmikroskopie weiterentwickeln. Kronast, Gray und sein ehemaliger Doktorvater Chuck Fadley haben diese Methode bereits mit der Anregung durch stehende Röntgenwellen kombiniert, um eine bessere Tiefenauflösung zu erreichen (SW-PEEM). 

Ab Mitte August plant Alexander Gray den ersten Aufenthalt an BESSY II. Er freut sich nicht nur auf Messungen und Gespräche, sondern auch auf die typische Berliner Atmosphäre: "Die Menschen sind sehr offen und freundlich, und die berühmte "Berliner Schnauze" ist mir noch nie begegnet. Ich denke, wenn ich eines Tages so eine typische raue Antwort erlebe, habe ich sie vielleicht verdient." Mit dieser humorvollen Einstellung wird sein Aufenthalt in Berlin sicher in jeder Hinsicht ein Erfolg.

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.