Feinstpartikel zurück in den Rohstoffkreislauf
Innerhalb von drei Teilprojekten werden organische, metallische und Feinststoffarten untersucht, die zu Zement recycelt werden könnten. © FINEST
Bei industriellen Prozessen entstehen immer auch feinkörnige Rückstände. Diese finden nur selten den Weg zurück in die industrielle Wertschöpfungskette, sondern werden meist entsorgt und stellen ein potenzielles Umweltrisiko dar. Das Projekt FINEST erfasst und untersucht verschiedene dieser Feinststoffströme mit dem Ziel, neue Konzepte zu entwickeln, um sie im Kreislauf zu halten und verbliebene Reststoffe gefahrlos abzulagern. FINEST konnte sich beim Nachhaltigkeitswettbewerb der Helmholtz-Gemeinschaft durchsetzen und wird nun 5 Millionen Euro gefördert.
Das Projekt wird vom Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF) am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) koordiniert und bezieht Teams am Helmholtz-Zentrum Berlin (HZB), dem Karlsruher Institut für Technologie (KIT), dem Helmholtz-Zentrum für Umweltforschung (UFZ), der TU Bergakademie Freiberg (TUBAF) und der Universität Greifswald mit ein.
Das HZB beteiligt sich an FINEST in einem Projekt zum Abbau von Mikroplastik. „Wir wollen gemeinsam mit dem UFZ untersuchen, wie sich Mikroplastik-Partikel abbauen lassen, etwa durch bakterielle Enzyme, die wir struktur-basiert verbessern. Zusätzlich wollen wir auch zusammen mit dem HZDR neue Detektionsmöglichkeiten für Mikro- und Nanoplastik entwickeln“, sagt Dr. Gert Weber, der am HZB in der Gruppe Makromolekulare Kristallographie forscht.
Die Forscher*innen der sechs beteiligten Institutionen beschäftigen sich ab Juli 2022 in dem fünfjährigen Projekt mit Feinststoffen anthropogenen Ursprungs wie Mikroplastik, mineralischen Additiven (Zusatzstoffen) oder Metallen, für die es bislang kaum Verwertungsmöglichkeiten gibt. Mittels innovativer Prozesse sollen die derzeit noch sehr niedrigen Verwertungsquoten dieser feinstpartikulären Stoffe erhöht und die verbleibenden Reststoffe unschädlich abgelagert werden, um eine nachhaltige Kreislaufwirtschaft voranzubringen.
Die vollständige Presseinfo lesen Sie auf der Webseite des HZDR.
HZDR/HZB
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23927;sprache=de
- Link kopieren
-
Batterieforschung mit dem HZB-Röntgenmikroskop
Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.
-
BESSY II: Neues Verfahren für bessere Thermokunststoffe
Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
-
Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.