Umweltauswirkungen von Perowskit-Silizium-PV-Modulen geringer als bei Silizium allein

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung.

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung. © Oxford PV

Eine Studie hat erstmals die Umweltauswirkungen von industriell hergestellten Perowskit-auf-Silizium-Tandem-Solarmodulen über den gesamten Lebenszyklus bewertet. Dabei stellte Oxford PV die Tandem-Solarmodule sowie Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung. Das Ergebnis: Die innovativen Tandem-Solarmodule sind über ihre Lebensdauer sogar noch umweltfreundlicher als herkömmliche Silizium-Heterojunktion-Module. Die Studie wurde im Fachjournal Sustainable Energy & Fuels veröffentlicht.

Photovoltaik boomt. Während im Jahr 2002 etwa 2 Gigawatt PV-Kapazität installiert war, stieg die Kapazität in 2022 auf mehr als 1 TW (1000 GW). Um die Klimazeile zu erreichen, soll Photovoltaik auch in den kommenden Jahrzehnten weiter ausgebaut werden. Tandem-Solarzellen, die Perowskit-Schichten mit Silizium kombinieren, erzeugen auf gleicher Fläche deutlich mehr Strom als die herkömmliche Siliziumtechnologie. Dabei wird eine Perowskit-Zelle auf eine Siliziumzelle aufgebracht. Diese Tandemtechnologie hat bei der solaren Umwandlungseffizienz Weltrekordwerte erreicht, der jetzt bei über 31 % liegt.

Erstmals industriell hergestellte Module über den Lebenszyklus bewertet

Doch auch bei PV-Solarmodulen ist es nötig, die Umweltauswirkungen über ihren gesamten Lebenszyklus zu betrachten, um sie weiter zu minimieren. Die Lebenszyklusbewertung von Perowskit-auf-Silizium-PV-Modulen stützte sich jedoch bisher stark auf Daten von Labor- und Testeinrichtungen und nicht von Herstellern. Nun haben Forschungsteams erstmals die Umweltleistung von industriell hergestellten Perowskit-Silizium-PV-Modulen bewertet.

"Wir haben festgestellt, dass Perowskit-auf-Silizium-PV-Module über eine Lebensdauer von 25 Jahren umweltfreundlicher sind als herkömmliche Silizium-Heterojunction-Module", sagt Bernd Stannowski vom Helmholtz-Zentrum Berlin, Ko-Autor der Studie.

Dabei bewerteten sie eine Reihe von Kategorien, darunter Wasserverbrauch, Toxizität für Mensch und Gewässer, Metallverbrauch und Material- und Energieaufwand für den gesamten Lebenszyklus eines Moduls von Anfang bis Ende: d. h. den gesamten Material- und Energieaufwand für die Waferproduktion, die Herstellung der Perowskit-Zelle und die Modulproduktion.

Tandemmodule: mehr Strom pro Fläche

Im Anschluss wurden die Umweltauswirkungen des Tandemmoduls gegen die während seiner Lebensdauer erzeugte Elektrizität abgewogen.

"Wir fanden heraus, dass das Perowskit-auf-Silizium-Modul die Umwelt um 6 bis 18 % weniger belastet als ein Silizium-Modul, wenn man die zusätzliche Energie berücksichtigt, die während der 25-jährigen Lebensdauer des Tandem-Moduls erzeugt wird", sagt Ko-Autor Martin Roffeis von der Technischen Universität Berlin.

Das in der Studie verwendete Tandemmodul würde in 22 Jahren die gleiche Menge an Strom erzeugen wie das referenzierte Silizium-Heteroübergangsmodul in 25 Jahren.

"Der höhere Wirkungsgrad des Perowskit-Silizium-Tandemmoduls kompensiert die Umweltbelastung, die durch das zusätzliche Perowskit-Material und die Prozesse entsteht", erklärt Jan-Christoph Goldschmidt, der an der Studie während seiner Zeit am Fraunhofer-Institut für Solare Energiesysteme beteiligt war und inzwischen an der Philipps-Universität Marburg forscht.

Die Studie zeigt auch, dass die Umweltverträglichkeit eines Perowskit-Silizium-Moduls in hohem Maße vom Energieverbrauch bei der Herstellung der Siliziumwafer beeinflusst wird.

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung.

Nachhaltigkeit gewinnt an Bedeutung

"Die Nachhaltigkeit von Solarmaterialien und Lieferketten gewinnt zunehmend an Bedeutung, da die Welt Solaranlagen im Multi-Terawatt-Bereich einsetzt", sagt Laura Miranda Pérez, Leiterin der Materialforschung bei Oxford PV. "Wir hoffen, dass unser Beitrag der Industrie und der wissenschaftlichen Gemeinschaft helfen wird, das Design, die Produktion und das End-of-Life-Management von Tandem-Technologien zu verbessern und so ihre Einführung zu unterstützen."

OxfordPV / red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.