Perowskit-Solarzellen: Eigenschaften bleiben noch rätselhaft

Aus der Krümmung um die Maxima der ARPES Messdaten (Bild, Ausschnitt) lässt sich die effektive Masse der Elektronen ableiten.

Aus der Krümmung um die Maxima der ARPES Messdaten (Bild, Ausschnitt) lässt sich die effektive Masse der Elektronen ableiten. © HZB

ARPES-Daten f&uuml;r verschiedene Photonenenergien (entlang einer bestimmten Richtung des reziproken Gitters). Sie zeigen: Die effektive Masse erh&ouml;ht sich wenig.</p> <p>&nbsp;

ARPES-Daten für verschiedene Photonenenergien (entlang einer bestimmten Richtung des reziproken Gitters). Sie zeigen: Die effektive Masse erhöht sich wenig.

  © HZB

Um die besonders günstigen Eigenschaften von Perowskit-Halbleitern für Solarzellen zu erklären, kursieren verschiedene Hypothesen. So sollten Polaronen oder auch ein gigantischer Rashba-Effekt eine große Rolle spielen. Ein Team an BESSY II hat diese Hypothesen nun experimentell widerlegt. Damit grenzen sie die möglichen Ursachen für die Transporteigenschaften weiter ein und ermöglichen bessere Ansätze zur gezielten Optimierung dieser Materialklasse.

Seit einigen Jahren boomt die Forschung an anorganischen und hybridorganischen Bleihalogenid-Perowskiten.  Die Materialklasse hat überaus interessante Eigenschaften: So wandeln einige Perowskit-Halbleiter auch das energiereiche blaue Spektrum des Sonnenlichts in elektrische Energie um, so dass Solarzellen auf Perowskitbasis im Tandem mit Silizium-Unterzellen inzwischen Wirkungsgrade von 30% erreichen. Perowskit-Halbleiter eignen sich auch für Leuchtdioden, als Halbleiterlaser und Strahlungsdetektoren. Anders als konventionelle Halbleiter lassen sich diese Materialien preisgünstig und mit wenig Energieaufwand aus Lösungen als Dünnfilme herstellen. Doch auch nach Jahren intensiver Forschung sind die mikroskopischen Prozesse in Perowskit-Halbleitern, die den guten Ladungstransport sicherstellen, nicht im Detail verstanden. Klar ist nur: Die Ladungsträger, die durch Sonnenlicht im Material freigesetzt werden, haben offenbar hohe Lebensdauern und gehen weniger häufig verloren, etwa an Defekten bzw. durch Rekombination.

Gute Hypothesen

Um dieses Verhalten zu erklären, kursieren verschiedene Hypothesen, die nun ein Team an BESSY II experimentell überprüft hat. Beraten wurde das Team um Prof. Oliver Rader von der Perowskit-Expertin Prof. Eva Unger am HZB, die auch die Einrichtungen im HySPRINT-Labor zur Probenpräparation zur Verfügung gestellt hat.

Keine großen Polaronen

Eine Hypothese geht davon aus, dass sich in Bleihalogenid-Perowskiten Polaronen bilden, die zum Ladungstransport beitragen. Solche Polaronen sind Schwingungen von Ionen im Kristallgitter, die wegen ihrer Ladung auf die Bewegung von Elektronen reagieren. Da Perowskite aus negativen (hier Blei) und positiven Ionen (hier Cäsium) bestehen, lag die Vermutung nahe, dass Polaronen eine Rolle spielen. Auch Messungen einer anderen Gruppe schienen diese These zu unterstützen.

An BESSY II lässt sich diese Hypothese jedoch experimentell genau überprüfen. Mit winkelaufgelöster Photoemissions-Spektroskopie (ARPES) ist es möglich, die elektronischen Bandstrukturen abzutasten. Ein gewichtiger Anteil von Polaronen am Ladungstransport würde sich durch eine höhere Effektive Masse bemerkbar machen. ARPES misst die kinetische Energie der Elektronen, also 1/2 mv2 mit Masse m und Geschwindigkeit v und je "zäher" der Elektronentransport, desto höher die sogenannte "effektive" Masse m. Da der Impuls p=mv ist, entspricht die Formel einer Parabel E= (p2)/(2m), die direkt im Experiment gemessen wird (siehe Abbildung): je größer m, desto geringer die Krümmung der Parabel.  

Die Messungen, die Maryam Sajedi an kristallinen Proben aus CsPbBr3 durchführte, zeigten jedoch keine geringeren Krümmungen und widerlegten damit die These von großen Polaronen. „Die effektive Masse, die wir aus den Messdaten ermittelt haben, ist nicht größer als theoretisch vorhergesagt“, sagt Maryam Sajedi. Und Oliver Rader erläutert: „Um sicher zu gehen, dass wir alle möglichen Effekte außer Polaronen berücksichtigen, zum Beispiel die Abstoßung der Elektronen untereinander, haben wir mit Theoretikern vom Forschungszentrum Jülich zusammengearbeitet. Es ergibt sich aber keine erhöhte Masse im Experiment, für die man Polaronen postulieren müsste.“  

Kein riesiger Rashba-Effekt

Die zweite Hypothese geht von einem gigantischen Rashba-Effekt aus, der die Verluste durch Rekombination von Ladungsträgern begrenzen soll. Der Rashba-Effekt beruht auf einer starken Spin-Bahn-Kopplung, die bei Blei-Halogenid-Perowskiten durch das Schwermetall Blei erzeugt werden könnte. Auch hier deuteten frühere Arbeiten auf diesen Effekt als mögliche Erklärung für die langen Lebensdauern der Ladungsträger hin. Maryam Sajedi untersuchte sowohl Proben aus anorganischem CsPbBr3 und aus hybrid-organischem MAPbBr3 mit Spin-ARPES und analysierte die Messdaten „Dieser Effekt ist mindestens hundertmal kleiner als angenommen“, kommentiert sie das Ergebnis.

Falsifikation ist wichtig

„Wir haben experimentell zwei verbreitete Hypothesen zu den Transporteigenschaften in Perowskiten widerlegen können, das ist ein wichtiges Ergebnis“, sagt Rader. Es ist hilfreich, bestimmte Hypothesen zu eliminieren, damit man bei der Optimierung dieser Materialien an den richtigen Hebeln ansetzen kann.

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.