Quantenkomplexität wächst linear für exponentiell lange Zeiten

Komplexe Systeme wie Wurmlöcher im Universum erfordern ein tieferes Verständnis von Raum, Zeit, Gravitation und Quantenphysik.

Komplexe Systeme wie Wurmlöcher im Universum erfordern ein tieferes Verständnis von Raum, Zeit, Gravitation und Quantenphysik. © Trahko/132658940/stock.adobe.com

Wer sich mit Physik beschäftigt, weiß: Zwischen Quantenphysik und Gravitationstheorie klafft ein ziemlicher Graben. Allerdings hat die theoretische Physik in den letzten Jahrzehnten mit Hilfe einer plausiblen Vermutung eine „Brücke“ konstruiert, um diesen Graben zu überwinden. Das hilft dabei, das Verhalten von komplexen Quanten-Vielkörpersystemen zu beschreiben, zum Beispiel von Schwarzen Löcher und Wurmlöchern im Universum. Nun hat eine Theoriegruppe an der Freien Universität Berlin und am HZB zusammen mit Teams aus Harvard-University, USA, eine mathematische Vermutung über das Verhalten von Komplexität in solchen Systemen bewiesen, und damit die Tragfähigkeit dieser Brücke erhöht. Die Arbeit ist in Nature Physics erschienen.

„Wir haben eine überraschend einfache Lösung für ein wichtiges Problem in der Physik gefunden“, sagt Prof. Jens Eisert, theoretischer Physiker an der Freien Universität Berlin und am HZB. Nur mit Stift und Papier, also rein analytisch, ist es den Berliner Physikern Jonas Haferkamp, Philippe Faist, Naga Kothakonda und Jens Eisert zusammen mit Nicole Yunger Halpern (Harvard, inzw. Maryland) gelungen, eine Vermutung zu beweisen, die große Auswirkungen auf komplexe Quanten-Vielkörpersysteme besitzt. „Das spielt zum Beispiel eine Rolle, wenn man das Volumen von Schwarzen Löchern oder auch Wurmlöchern beschreiben will“, erklärt Jonas Haferkamp, der bei Eisert promoviert und Erstautor der Arbeit ist.

Komplexe Quanten-Vielkörpersysteme lassen sich durch Schaltungen aus Quanten-Bits nachbauen. Die Frage ist jedoch: Wie viele elementare Operationen sind nötig, um den gewünschten Zustand zu präparieren? Oberflächlich scheint es so auszusehen, dass diese minimale Anzahl an Operationen - die Komplexität des Systems - stets am Wachsen ist. Die Physiker Adam Brown und Leonard Susskind von der Stanford Universität formulierten diese Intuition als eine mathematische Vermutung: Die Quantenkomplexität eines Vielteilchensystems sollte zunächst linear wachsen für astronomisch lange Zeiten und dann - noch länger - in einem Zustand maximaler Komplexität verharren. Motiviert wurde ihre Vermutung durch das Verhalten von  Wurmlöchern in Gravitationstheorien, deren Volumen scheinbar ewig lange linear anwächst. Tatsächlich wird weiter vermutet, dass Komplexität und das Volumen von Wurmlöchern ein und dieselbe Größe aus zwei verschiedenen Blickwinkeln sind. „Diese Redundanz in der Beschreibung wird auch holographisches Prinzip genannt und ist ein wichtiger Ansatz zur Vereinigung von Quantentheorie und Gravitation. In einem gewissen Sinne kann Brown und Susskinds Vermutung zum Wachstum von Komplexität also als Plausibilitätscheck für Ideen rund um das holographische Prinzip betrachtet werden“, erklärt Haferkamp.

Die Gruppe hat nun gezeigt, dass die Quantenkomplexität von Zufallsschaltungen tatsächlich mit der Zeit linear ansteigt, bis sie zu einem Zeitpunkt gesättigt ist, der exponentiell zur Systemgröße ist. Solche Zufallsschaltungen sind ein mächtiges Modell für die Dynamik von Vielteilchensystemen. Die Schwierigkeit der Vermutung kommt daher, dass man kaum ausschließen kann, dass es „Abkürzungen gibt“, also Schaltkreise mit viel geringerer Komplexität als erwartet. „Unser Beweis ist eine überraschende Kombination aus geometrischen Methoden und solchen aus der Quanteninformationstheorie. Dieser neue Zugang macht es möglich, die Vermutung für die überwältigende Mehrheit von Systemen zu lösen ohne das notorisch schwierige Problem für individuelle Zustände angehen zu müssen“, sagt Haferkamp.

„Unsere Ergebnisse bieten eine solide Grundlage für das Verständnis der physikalischen Eigenschaften chaotischer Quantensysteme, von schwarzen Löchern bis hin zu komplexen Vielteilchensystemen“, fügt Eisert an. Jonas Haferkamp hat seine Promotion damit nun bald abgeschlossen. „Die Arbeit in Nature Physics ist ein schöner Höhepunkt meiner Doktorarbeit “, sagt der junge Physiker, der Ende des Jahres eine Position an der Harvard Universität antritt. Als Postdoc kann er dort seine Forschungen fortsetzen, am liebsten ganz klassisch mit Stift und Papier und im Austausch mit den besten Köpfen in der theoretischen Physik.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.