Amran Al-Ashouri gewinnt den Dissertationspreis Adlershof 2021

Herzlichen Glückwunsch: Amran-Al Ashouri (3.v.r.) gewinnt den Dissertationspreis 2021. Insgesamt drei Nominierte hielten bei der Veranstaltung spannende Vorträge.

Herzlichen Glückwunsch: Amran-Al Ashouri (3.v.r.) gewinnt den Dissertationspreis 2021. Insgesamt drei Nominierte hielten bei der Veranstaltung spannende Vorträge. © IGAFA/Matthias Brandt

Die Weltrekordzelle aus dem HZB. Mit seiner Forschung leistete Amran Al-Ashouri einen wichtigen Beitrag zu diesem Erfolg.

Die Weltrekordzelle aus dem HZB. Mit seiner Forschung leistete Amran Al-Ashouri einen wichtigen Beitrag zu diesem Erfolg. © Amran Al-Ashouri /HZB

Wie arbeiten Perowskit-Tandemsolarzellen?

02:15

Am 17. Februar 2022 wurde zum 20. Mal der Dissertationspreis Adlershof verliehen. Dr. Amran Al-Ashouri (3.v.r.) aus der HZB-Nachwuchsgruppe „Perowskit-Tandemsolarzellen“ erhielt die mit 3.000 Euro dotierte Auszeichnung. Der Physiker erforscht, wie sich mithilfe neuer organischer Kontaktschichten hocheffiziente Perowskit-Silizium-Tandemsolarzellen optimieren lassen.

Heutige Solarmodule werden hauptsächlich aus Silizium hergestellt, bei denen sich der Wirkungsgrad nicht mehr wesentlich steigern lässt. Seit einigen Jahren rücken daher Perowskite in den Fokus der Forschung. Diese Halbleiterverbindungen wandeln das Sonnenlicht effizient in elektrische Energie um. Insbesondere lassen sie sich hervorragend mit Silizium-Solarzellen zu Tandemsolarzellen kombinieren, die das Sonnenlicht gemeinsam viel effektiver nutzen können.

Amran Al-Ashouri entwickelte in seiner Doktorarbeit neue organische Kontaktschichten für Perowskit-Silizium-Tandemsolarzellen und erforschte die Feinabstimmung der elektrischen Grenzflächen für minimale Ladungsverluste. Die mit mehreren Teams am HZB realisierten Tandemsolarzellen erreichten mithilfe dieser Optimierung Rekord-Wirkungsgrade (siehe News „Weltrekord wieder beim HZB“). Durch ihren geringen Ressourcen- und Kostenaufwand stellen Tandemsolarzellen eine wichtige Technologie dar, die die Energiewende beschleunigen können.

„In meiner Doktorarbeit geht es um eine neuartige Technologie, die Solarzellen boosten kann. Unser Ziel ist es, dass die Ergebnisse bei den Tandemsolarzellen von der Industrie genutzt werden können“, sagt Amran Al-Ashouri bei der Preisvergabe. Für dieses Forschungsthema habe er sich bewusst entschieden. „Die Technologien zur Bewältigung der Klimakrise sind zwar weitestgehend vorhanden, aber müssen noch stärker zum Einsatz kommen. Innovationen aus der Forschung treiben den Übergang jedoch an und machen die zukünftige Anwendung effektiver.“

Der Dissertationspreis wird jährlich gemeinsam von dem Forschungsnetzwerk IGAFA e. V., der Humboldt-Universität zu Berlin und der WISTA Management GmbH gestiftet und organisiert. Dieses Jahr gab es neun Bewerberinnen und Bewerber, von denen es drei in die Endauswahl schafften. Die Nominierten präsentierten ihre wissenschaftlichen Leistungen auf anschauliche Weise innerhalb von 15 Minuten.

Zur Person

Dr. Amran Al-Ashouri studierte Physik an der Universität Duisburg-Essen. Von September 2017 bis Februar 2021 promovierte er am HZB sowie der Technischen Universität Berlin. Der Physiker ist seitdem als Postdoc am HZB in der Nachwuchsgruppe „Perowskit- Tandemsolarzellen“ tätig.

(red/sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.