Flüssigkristalle für schnelle Schaltprozesse

Das Bild zeigt den modifizierten Probenhalter mit Proben in der ALICE-Messkammer an BESSY II.

Das Bild zeigt den modifizierten Probenhalter mit Proben in der ALICE-Messkammer an BESSY II. © A. Smekhova/HZB

Schematische Darstellung des EZL10/10 Moleküls.

Schematische Darstellung des EZL10/10 Moleküls. © Soft Matter, 2021, DOI: 10.1039/D1SM01543E

Ein internationales Team hat eine neu synthetisierte  flüssigkristalline Verbindung untersucht, die Anwendungen in der Opto-Elektronik verspricht. Einfache stäbchenförmige Moleküle mit nur einem einzigen Chiralitätszentrum ordnen sich bei Raumtemperatur von selbst zu spiralförmigen Strukturen. Durch resonante Röntgenstreuung an BESSY II konnten die Forscher*innen nun die Ganghöhe der Helixstruktur bestimmen. Mit nur etwa 100 Nanometern ist diese extrem kurz, was besonders schnelle Schaltprozesse ermöglichen könnte.

Flüssigkristalle sind zwar nicht fest, sondern flüssig, aber einige ihrer physikalischen Eigenschaften sind dennoch richtungsabhängig  wie in einem Kristall. Das liegt daran, dass sich ihre Moleküle in bestimmten Mustern anordnen können. Zu den bekanntesten Anwendungen gehören Flachbildschirme und digitale Displays. Sie basieren auf Pixeln aus Flüssigkristallen, deren optische Eigenschaften durch elektrische Felder geschaltet werden können.

Schraubenförmige Strukturen

Einige Flüssigkristalle bilden so genannte cholesterische Phasen: Die Moleküle ordnen sich zu schraubenförmigen Strukturen an, die durch eine Steigung gekennzeichnet sind und sich entweder nach rechts oder nach links drehen. "Die Steigung der cholesterischen Spiralen bestimmt, wie schnell sie auf ein angelegtes elektrisches Feld reagieren", erklärt Dr. Alevtina Smekhova, Physikerin am HZB und Erstautorin der Studie, die jetzt in Soft Matter veröffentlicht wurde.

Stäbchenförmige Moleküle

Darin untersuchte sie mit Partnern der Akademien der Wissenschaften in Prag, Moskau und Chernogolovka eine in Prag entwickelte flüssigkristalline cholesterische Verbindung namens EZL10/10. "Solche cholesterischen Phasen werden normalerweise von Molekülen mit mehreren chiralen Zentren gebildet, aber hier hat das Molekül nur ein chirales Zentrum", erklärt Smekhova. Es handelt sich um eine einfache Molekülkette mit einer Laktateinheit.

Extrem kurze Ganghöhe

An BESSY II hat das Team diese Verbindung nun mit weichem Röntgenlicht untersucht und die Steigung und räumliche Anordnung der Spiralen bestimmt. Aus den Messdaten ermittelten sie eine Ganghöhe von 104 Nanometern! Das ist doppelt so kurz wie bei bisher bekannten cholesterischen Phasen in Flüssigkristallen. Weitere Analysen zeigten, dass die cholesterischen Spiralen in diesem Material Domänen mit charakteristischen Längen bilden.

Ausblick:

"Diese sehr kurze Ganghöhe macht das Material einzigartig und vielversprechend für optoelektronische Bauelemente mit sehr kurzen Schaltzeiten", betont Smekhova. Darüber hinaus ist die EZ110/10-Verbindung thermisch und chemisch stabil und kann leicht weiter variiert werden, um Strukturen mit maßgeschneiderten Ganghöhen zu erhalten.

Anmerkung: Dr. Alevtina Smekhova arbeitet am HZB mit einem Schwerpunkt auf metrologischen Messungen und Datenstandardisierung. Ziel ist es unter anderem, neue Nutzer für die synchrotronbasierte Forschung an Energiematerialien, Quantenmaterialien oder Materialien der Informations- und Kommunikationstechnologie an BESSY II zu gewinnen.

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.