Oberflächenanalytik an BESSY II: Schärfere Einblicke in Dünnschicht-Systeme

Die Illustration zeigt, wie die APECS-Messung an einem Nickel-Einkristall mit oxidierter Oberfläche funktioniert. Ein Röntgenstrahl ionisiert Atome, entweder im Nickel-Kristall oder an der Oberfläche. Die angeregten Photoelektronen von der Oberfläche und aus dem Kristall haben leicht unterschiedliche Bindungsenergien. Die Auger-Elektronen ermöglichen es, die Herkunft der Photoelektronen zu bestimmen.

Die Illustration zeigt, wie die APECS-Messung an einem Nickel-Einkristall mit oxidierter Oberfläche funktioniert. Ein Röntgenstrahl ionisiert Atome, entweder im Nickel-Kristall oder an der Oberfläche. Die angeregten Photoelektronen von der Oberfläche und aus dem Kristall haben leicht unterschiedliche Bindungsenergien. Die Auger-Elektronen ermöglichen es, die Herkunft der Photoelektronen zu bestimmen. © Martin Künsting /HZB

Grenzflächen in Halbleiter-Bauelementen oder Solarzellen spielen für ihre Funktionalität eine entscheidende Rolle. Dennoch war es bislang oft schwierig, mit spektroskopischen Verfahren angrenzende Dünnschichten getrennt zu untersuchen. Ein HZB-Team hat an BESSY II zwei verschiedene spektroskopische Methoden kombiniert und an einem Modellsystem demonstriert, wie gut die Unterscheidung damit gelingt.

Photo-Elektronen-Spektroskopie (PES) ermöglicht die chemische Analyse von Oberflächen und Halbleiterschichten. Dabei trifft ein Röntgenpuls (Photonen) auf die Probe und regt Elektronen an, die Probe zu verlassen. Mit speziellen Detektoren ist es dann möglich, Richtung und Bindungsenergie dieser Elektronen zu messen und so Auskunft über elektronische Strukturen und chemische Umgebung der Atome im Material zu erhalten. Liegen die Bindungsenergien jedoch in angrenzenden Schichten nahe beieinander, dann ist es mit PES kaum möglich, diese Schichten voneinander zu unterscheiden.

 Ein Team am HZB hat nun gezeigt, wie sich dennoch präzise Zuordnungen erreichen lassen: Sie kombinierten Photo-Elektronen-Spektroskopie mit einer zweiten spektroskopischen Methode: der Auger-Elektronen Spektroskopie. Dabei werden Photoelektronen und Auger-Elektronen zeitgleich gemessen, was der resultierenden Methode ihren Namen gibt: APECS für Auger-Elektronen-Photoelektronen-Koinzidenzspektroskopie (APECS).  

Ein Vergleich der so ermittelten Bindungsenergien lässt dann Rückschlüsse auf die jeweilige chemische Umgebung zu und ermöglicht so die Unterscheidung feinster Schichten. An einer einkristallinen Nickel-Probe, einem sehr guten Modellsystem für viele Metalle, konnte das Team nun zeigen, wie gut das funktioniert: Die Physiker konnten aus den Messdaten präzise die Verschiebung der Bindungsenergie der Elektronen ermitteln, je nachdem, ob diese aus der dünnen oxidierten Oberfläche oder aus den tieferen Kristallschichten stammten.

„Zunächst waren wir skeptisch, ob es gelingen würde, aus den Daten wirklich eine klare Unterscheidung herauszulesen. Wir waren begeistert über den deutlichen Effekt“, sagt Artur Born, Erstautor der Arbeit, der im Team von Prof. Alexander Föhlisch seine Doktorarbeit macht.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.