Strahldiagnostik für zukünftige Beschleuniger im Tischformat

Aus den Interferenzmustern bei unterschiedlichen Brennweiten und Photonenintensitäten lassen sich Aussagen über die Qualität des Strahls gewinnen.

Aus den Interferenzmustern bei unterschiedlichen Brennweiten und Photonenintensitäten lassen sich Aussagen über die Qualität des Strahls gewinnen. © www.nature.com/articles/s42005-021-00717-x

Die Simulation zeigt das Prinzip eines Laser-Wakefield-Beschleunigers: Der Laserpuls (nicht abgebildet) bewegt sich nach rechts und verdrängt alle Plasmaelektronen aus seiner Bahn. Dabei erzeugt er Blasen aus positiv geladenen Ionen, deren starke elektrische Felder Elektronen anziehen und beschleunigen, während sie mit dem Laserpuls mitfliegen.

Die Simulation zeigt das Prinzip eines Laser-Wakefield-Beschleunigers: Der Laserpuls (nicht abgebildet) bewegt sich nach rechts und verdrängt alle Plasmaelektronen aus seiner Bahn. Dabei erzeugt er Blasen aus positiv geladenen Ionen, deren starke elektrische Felder Elektronen anziehen und beschleunigen, während sie mit dem Laserpuls mitfliegen. © Joshua Ludwig, cc 4.0 wikimedia.org/wiki/File:Frame_000000100_extra_terrible_resolution.png

Seit Jahrzehnten wurden Teilchenbeschleuniger immer größer. Inzwischen haben Ringbeschleuniger mit Umfängen von vielen Kilometern eine praktische Grenze erreicht. Auch Linearbeschleuniger im GHz-Bereich erfordern sehr große Baulängen. Seit einigen Jahren gibt es jedoch eine Alternative: „Teilchenbeschleuniger im Tischformat“, die auf der Laseranregung von Kielwellen in Plasmen (laser wakefield) basieren. Solche kompakten Teilchenbeschleuniger wären insbesondere für künftige beschleunigergetriebene Lichtquellen interessant, werden aber auch für die Hochenergiephysik untersucht. Ein Team aus dem Helmholtz-Zentrum Berlin (HZB) und der Physikalisch-Technischen Bundesanstalt (PTB) hat eine Methode entwickelt, um den Querschnitt der so beschleunigten Elektronenpakete präzise zu vermessen.  Dadurch rücken Anwendungen dieser neuen Beschleunigertechnologien für Medizin und Forschung näher.

Das Prinzip der Laser-Wakefield-Beschleuniger: Ein Hochleistungslaser regt in einem Plasma eine Ladungswelle an, die sich mit der Geschwindigkeit des Laserpulses fortpflanzt und ihrem „Kielwasser“ Elektronen hinterherzieht und so beschleunigt. Elektronenenergien im GeV-Bereich können mit dieser Technik schon seit längerem erreicht werden. Allerdings sind die so erzeugten Elektronenpakete bisher zu klein und zu schlecht fokussiert, um die von ihnen abgegebene Synchrotronstrahlung zu nutzen, ein intensives, kohärentes Licht, das für die Forschung in vielen unterschiedlichen Disziplinen eingesetzt wird.

Anmerkung:

Die hier geschilderte Arbeit findet im Rahmen des Projekts ATHENA – „Accelerator Technology Helmholtz Infrastructure“ statt.  Das ist eine neue Forschungs- und Entwicklungsplattform der Helmholtz-Gemeinschaft für Beschleunigertechnologien. Auf Grundlage innovativer plasmabasierter Teilchenbeschleuniger und hochmoderner Lasertechnologie sollen zwei Leuchtturmprojekte aufgebaut werden: bei DESY in Hamburg eine Elektronen- und in Dresden eine Hadronenbeschleunigeranlage. An beiden Anlagen sollen verschiedener Einsatzgebiete entwickelt werden, die von einem kompakten Freie-Elektronen-Laser über neuartige medizinische Anwendungen bis hin zu neuen Einsatzmöglichkeiten in Kern- und Teilchenphysik reichen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.