Unordnung bringt quantenphysikalische Talente zum Vorschein

Der Dirac-Kegel ist typisch für Topologische Isolatoren und auf allen 6 Bildern praktisch unverändert (ARPES-Messungen an BESSY II). Der blaue Pfeil zeigt zusätzlich die Valenzelektronen im Volumen. Das Synchrotronlicht tastet beide ab und kann so den Dirac Kegel an der Oberfläche (elektrisch leitend) vom dreidimensionalen Volumen (isolierend) unterscheiden.

Der Dirac-Kegel ist typisch für Topologische Isolatoren und auf allen 6 Bildern praktisch unverändert (ARPES-Messungen an BESSY II). Der blaue Pfeil zeigt zusätzlich die Valenzelektronen im Volumen. Das Synchrotronlicht tastet beide ab und kann so den Dirac Kegel an der Oberfläche (elektrisch leitend) vom dreidimensionalen Volumen (isolierend) unterscheiden. © HZB

Quanteneffekte machen sich vor allem bei extrem tiefen Temperaturen bemerkbar, was ihren Nutzen für technische Anwendungen einschränkt. Dünnschichten aus MnSb2Te4 zeigen jedoch neue Talente, weil sie zu einem kleinen Überschuss an Mangan neigen. Offenbar sorgt die entstehende Unordnung für spektakuläre Eigenschaften: Das Material erweist sich als Topologischer Isolator und ist ferromagnetisch bis zu vergleichsweise hohen Temperaturen von 50 Kelvin, zeigen Messungen an BESSY II.  Damit kommt diese Materialklasse für Quantenbits in Frage, aber auch generell für die Spintronik oder Anwendungen in der Hochpräzisions-Metrologie.

Quanteneffekte wie der anomale Quanten-Hall-Effekt ermöglichen Sensoren mit höchster Empfindlichkeit, sind die Grundlage für spintronische Bauelemente in künftigen Informationstechnologien und auch für Qubits in Quantencomputern der Zukunft. Doch in der Regel zeigen sich die dafür relevanten Quanteneffekte nur bei sehr tiefen Temperaturen nahe dem absoluten Nullpunkt und in besonderen Materialsystemen deutlich genug, um nutzbar zu sein.

Ferromagnetischer Topologischer Isolator

Nun hat ein internationales Team um den HZB-Physiker Prof. Dr. Oliver Rader und Prof. Dr. Gunther Springholz, Universität Linz, in Dünnschichten von MnSb2Te4 zwei besonders wichtige physikalische Eigenschaften beobachtet: Solche Strukturen sind robuste Topologische Isolatoren und außerdem ferromagnetisch bis zu knapp 50 Kelvin.  „Den bislang publizierten theoretischen Betrachtungen zufolge, sollte das Material weder ferromagnetisch noch topologisch sein“, sagt Rader. „Wir haben genau diese beiden Eigenschaften nun aber experimentell nachgewiesen.“

Unordnung macht den Unterschied

Die Gruppe kombinierte Messungen von spin- und winkelaufgelöster Photoemissionsspektroskopie (ARPES) und magnetischen Röntgenzirkulardichroismus (XMCD) an BESSY II, untersuchte die Oberflächen mit Rastertunnelmikroskopie (STM) und -spektroskopie (STS), und führte weitere Untersuchungen durch. „Dadurch ist nun auch klar, warum in diesem Fall die theoretische Betrachtung zu einem anderen Resultat gekommen ist – die Theorie ging von einer ideal geordneten Struktur aus, aber wir sehen, dass die zusätzlichen Mangan-Atome zu einer gewissen Unordnung geführt haben. Das erklärt den Unterschied“, so Rader.

Robust bis zu 50 Kelvin

Die Eigenschaften sind außerordentlich robust und treten bis zu einer Temperatur von knapp 50 K auf, das liegt dreimal höher als bei den besten ferromagnetischen Systemen zuvor (siehe Nature, 2019). Damit ist dieses Material ein interessanter Kandidat für die Spintronik und sogar für Qubits.

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.