Neutroneninstrument VSANS wird in den USA weiter genutzt

Das VSANS-Instrument (hier in der Neutronenhalle des BER II) kann an der Penn State University weiter genutzt werden.

Das VSANS-Instrument (hier in der Neutronenhalle des BER II) kann an der Penn State University weiter genutzt werden. © A. Kubatzki/HZB

Ende 2019 wurde die Berliner Neutronenquelle BER II planmäßig abgeschaltet. Damit die hochwertigen Instrumente weiter für die Forschung genutzt werden können, ziehen sie an geeignete Neutronenquellen im In- und Ausland um. Nun ist ein weiterer Umzug vereinbart worden: Das Instrument für Kleinwinkelstreuung (VSANS) wird im Frühjahr 2022 am Breazeale-Forschungsreaktor an der Penn State University, USA, eine neue Heimat finden.

An der Penn State University betreibt das Radiation Science & Engineering Center (RSEC) den Breazeale-Reaktor, der Neutronen für die Forschung erzeugt. Um das neue, sehr große VSANS Instrument aufzunehmen, ist nun dort eine Erweiterung geplant.

VSANS steht für Very Small-Angle Neutron Scattering, also die Streuung von Neutronen unter sehr kleinen Streuwinkeln. Diese Methode ermöglicht Einblicke in kolloidale Systeme und weiche Materie, aber auch in Gläser, biomimetische Strukturproteine, Mikroemulsionen, flexible Elektronik und viele weitere Fragestellungen, von der Physik bis zur Biologie.

„Unser Anliegen ist, dass unsere hervorragenden Instrumente auch nach dem Abschalten des BER II weiter für die Forschung zur Verfügung stehen. Wir freuen uns daher sehr, dass das VSANS am Breazeale-Reaktor wieder aufgebaut wird“, sagt Dr. Roland Steitz. Damit haben die HZB-Expertinnen und Experten nun für fast alle Neutroneninstrumente einen neuen Standort gefunden.

"Der Breazeale-Reaktor des Penn State RSEC wird der einzige universitäre Forschungsreaktor mit einer SANS-Anlage in den Vereinigten Staaten sein", erklärt Prof. Kenan Ünlü, Direktor des RSEC und Professor für Kerntechnik.

Im aktuellen Highlightbericht 2019/2020 finden Sie auf Seite 40-41 eine Übersicht zu den bisher vermittelten Neutroneninstrumenten.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • 20 Jahre naturwissenschaftliche Förderung im Schülerlabor
    Nachricht
    29.11.2024
    20 Jahre naturwissenschaftliche Förderung im Schülerlabor
    38.000 Besucher*innen in 20 Jahren: Hohe Nachfrage zeigt Bedarf an naturwissenschaftlicher Bildung

    Vor 20 Jahren, am 29.11.2004, eröffnete der damalige Berliner Bildungssenator Klaus Böger eines der ersten Schülerlabore der Hauptstadt. Seither fördert das Helmholtz-Zentrum Berlin (HZB) in Zusammenarbeit mit dem Berliner Senat erfolgreich naturwissenschaftliche Bildung durch Projekttage und Fortbildungen im Schülerlabor.

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.