Überblicksbeitrag: Methoden der Röntgenstreuung mit Synchrotronstrahlung

Resonantes R&ouml;ntgenlicht (lila) erzeugt einen rumpfangeregten Zustand am Sauerstoffatom (rot) des H<sub>2</sub>O-Molek&uuml;ls. Dies verursacht ultraschnelle Protonendynamik. Die Potentialfl&auml;che des elektronischen Grundzustands (unten) und die Bindungsdynamik werden durch spektrale Merkmale der resonanten inelastischen R&ouml;ntgenstreuung erfasst (rechts).</p> <p>

Resonantes Röntgenlicht (lila) erzeugt einen rumpfangeregten Zustand am Sauerstoffatom (rot) des H2O-Moleküls. Dies verursacht ultraschnelle Protonendynamik. Die Potentialfläche des elektronischen Grundzustands (unten) und die Bindungsdynamik werden durch spektrale Merkmale der resonanten inelastischen Röntgenstreuung erfasst (rechts).

© Martin Künsting /HZB

Synchrotronlichtquellen liefern brillantes Licht mit dem Fokus auf Röntgenstrahlung und haben unsere Fähigkeiten der Charakterisierung von Materialien enorm erweitert. In den Reviews of Modern Physics gibt ein internationales Team nun einen Überblick über elastische und inelastische Röntgenstreuprozesse, erläutert den theoretischen Unterbau und beleuchtet, welche Einblicke diese Methoden in physikalische, chemische, bio- und energie-relevante Themen eröffnen.

„Mit Röntgenstreuung lassen sich breit gefächerte Fragestellungen untersuchen und lösen: Angefangen mit den Eigenschaften und Anregungen funktionaler Festkörper, über homogene und heterogene chemische Prozesse und Reaktionen, bis hin zum Pfad eines Protons bei der Spaltung von Wasser“, erläutert Prof. Dr. Alexander Föhlisch, der am HZB das Institut Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung leitet.

Der Beitrag gibt einen Überblick über experimentelle und theoretische Ergebnisse auf dem Gebiet der resonanten Streuung von durchstimmbarer weicher und harter Röntgenstrahlung. Dabei liegt der Schwerpunkt auf der resonanten inelastischen Röntgenstreuung (RIXS) und der resonanten Auger-Streuung (RAS). In der Übersicht skizzieren die Autoren die wichtigsten Errungenschaften aus den letzten zwei Jahrzehnten an Synchrotronlichtquellen bis hin zu neuesten Fortschritten bei zeitaufgelösten Studien mit Freie-Elektronen-Röntgenlasern.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.