BESSY II: Neue Einblicke in schaltbare MOF-Strukturen an den MX-Beamlines

Blick in einen MOF-Kristall am Beispiel von DUT-8. Die riesigen Poren sind klar erkennbar.</p> <p>

Blick in einen MOF-Kristall am Beispiel von DUT-8. Die riesigen Poren sind klar erkennbar.

© TU Dresden

Metallorganische Gerüstverbindungen (MOFs) finden breite Anwendung in Gasspeicherung, Stofftrennung, Sensorik oder Katalyse. Eine spezielle Klasse dieser MOFs hat nun ein Team um Prof. Dr. Stefan Kaskel, TU Dresden, an den MX-Beamlines von BESSY II untersucht. Es handelt sich um „schaltbare“ MOFs, die auf äußere Reize reagieren können. Ihre Analyse zeigt, wie das Verhalten des Materials mit Übergängen zwischen geordneten und ungeordneten Phasen zusammenhängt. Die Ergebnisse sind nun in Nature Chemistry publiziert.

Metallorganische Gerüstverbindungen (engl.: metal-organic framework compounds – MOFs) bestehen aus anorganischen und organischen Gruppen und zeichnen sich durch eine Unzahl an Poren aus, in die sich andere Moleküle einlagern können. Daher sind MOFs für viele Anwendungen interessant, beispielsweise für die Speicherung von Gasen, aber auch Stofftrennung, Sensorik oder Katalyse. Einige dieser MOF-Strukturen reagieren auf unterschiedliche Gastmoleküle , indem sie ihre Strukturen verändern. Sie gelten damit als schaltbar.

Dazu gehört auch „DUT-8“, ein Material, das nun an den MX-Beamlines von BESSY II untersucht wurde.  „MOF-Kristalle lassen sich an den MX-Beamlines sehr gut analysieren“, sagt HZB-Experte Dr. Manfred Weiss, der das MX-Team leitet. „Denn MOF-Kristalle weisen viele Gemeinsamkeiten mit Proteinkristallen auf. So sind beide von großen Poren durchsetzt, die in den Proteinkristallen mit Flüssigkeit gefüllt sind, während die in den MOFs Gastmolekülen Raum bieten" erläutert Weiss.

„Die Beugungsdiagramme, die DUT-8 an den HZB-MX-Strahlrohren zeigte, waren äußerst komplex. Wir konnten dies nun auf diverse Übergänge zwischen geordneten und weniger geordneten Phasen zurückführen“, erläutert Stefan Kaskel. "Dabei dirigiert das eingeschlossene Gastmolekül das Netzwerk in eine von über tausend möglichen Fehlordnungskonfigurationen." 

Die Ergebnisse tragen dazu bei, Schaltprozesse und Gasaustauschreaktionen in solchen MOF-Strukturen besser zu verstehen, so dass künftige funktionale MOF-Materialien zielgerichtet entwickelt werden können.

Die Untersuchungen wurden durch das DFG-Programm (FOR2433) unterstützt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.