Perowskit-Solarzellen: Rolle der Wasserstoffbrückenbindungen beleuchtet

Der Ausschnitt zeigt ausgewählte Orbitale in MAPI-Perowskit im Grundzustand.

Der Ausschnitt zeigt ausgewählte Orbitale in MAPI-Perowskit im Grundzustand. © HZB

Auf der Basis von Röntgenmessungen an Methylammonium-Perowskit-Halbleitern hat ein HZB-Team nun gezeigt, welche Rolle Wasserstoffbrückenbindungen in diesen Materialien spielen. Außerdem fand die Forschungsgruppe, dass Strahlenschäden durch weiche Röntgenstrahlung bei dieser empfindlichen Materialklasse noch schneller auftreten als erwartet. Beide Ergebnisse liefern wichtige Hinweise für die Perowskit-Materialforschung für Solarzellen.

Metallhalogenid-Perowskit (MHP)-Solarzellen werden in Labors auf der ganzen Welt entwickelt. Diese Materialklasse ist kostengünstig, leicht zu verarbeiten und hat bereits nach wenigen Jahren der Entwicklung Wirkungsgrade von über 20 Prozent erreicht. Durch Variation der chemischen Zusammensetzung können die optoelektronischen Eigenschaften genau auf das Sonnenlicht und die jeweilige Anwendung abgestimmt werden. Die höchsten Wirkungsgrade erreichen hybride Perowskite, die Methylammonium-Kationen (MA) enthalten, aber die Anwesenheit von MA ist auch mit Instabilität verbunden.

Nun hat eine internationale Kollaboration, an der auch die HZB-Abteilung Grenzflächen-Design unter der Leitung von Marcus Bär beteiligt ist, neue Erkenntnisse über die elektronische Struktur und insbesondere die Wasserstoffbrückenbindungen in Methylammonium-Blei-Iodid-Perowskit-Filmen gewonnen. Dafür kombinierten sie Messdaten mit einer theoretischen Modellierung. Die Proben stammten aus dem Labor des Perowskit-Pioniers Henry Snaith, Universität Oxford, und die röntgenspektroskopischen Messungen (XES) wurden noch vor der Pandemie an der Advanced Light Source am Lawrence Berkeley National Laboratory durchgeführt. Die Modellierung der elektronischen Struktur und der ultraschnellen Bewegung von Wasserstoffatomen innerhalb der Struktur leistete Michael Odelius, Universität Stockholm.

Signatur der Wasserstoffbrückenbindungen entdeckt

„Durch die Kombination von elementspezifischen weichen röntgenspektroskopischen Messungen mit Molekulardynamik und Dichtefunktionaltheorie-Modellierung konnten wir neue Einblicke in die elektronische Struktur und Dynamik der organischen MHP-Komponente gewinnen", sagt Regan Wilks, HZB-Physiker und Erstautor der Studie. Insbesondere gelang es dem Team, spektrale Signaturen der Wasserstoffbrückenbindungen zwischen dem organischen Methylammonium-Molekül und dem anorganischen Gerüst des Perowskits zu detektieren. Messungen auf der Femtosekunden-Zeitskala lieferten zusätzlich Hinweise auf signifikante dynamische Änderungen der Struktur während der Messung.

Strahlenschäden treten schneller auf als erwartet

Um diese ultraschnellen Signale von den Effekten der Schädigung durch den hochintensiven Synchrotron-Röntgenstrahl zu trennen, charakterisierte die Gruppe auch diese Schädigungseffekte gründlich. Diese Schädigungen können auf der Zeitskala von 100 ms auftreten, also viel schneller als die Dauer eines Standardexperiments. Das bedeutet: zu dem Zeitpunkt, an dem die Messung beginnt, Ergebnisse zu liefern, ist der Schaden bereits eingetreten.  

„Es ist wichtig, diese Effekte in einer Publikation zu dokumentieren, auch wenn es nicht das wissenschaftlich interessanteste Ergebnis ist, weil es eine sehr wichtige Information für andere Gruppen sein kann, die vielleicht ähnliche Experimente durchführen oder unsere Ergebnisse bestätigen wollen", betont Wilks. Um Strahlenschäden und damit Artefakte während der Messung zu vermeiden, wurde die Probe unter dem weichen Röntgenstrahl während der Messung senkrecht zum Photonenstrahl bewegt, so dass die Bestrahlung eines jeden Punktes auf einen Sekundenbruchteil beschränkt blieb.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.