Virtuelle Rundgänge: Erleben Sie das HZB in 360 Grad!

Leider können wir zurzeit Corona-bedingt keine Besuchergruppen am HZB empfangen. Trotzdem wollen wir für Sie erlebbar bleiben! Folgen Sie einfach unseren Rundgängen in 360 Grad und erleben Sie, wie wir am Beschleuniger BESSY II forschen. Weitere Rundgänge sind in Planung.

„Machen Sie es sich gemütlich und starten Sie Ihren eigenen virtuellen Rundgang durch unsere Welt der Forschung! Wir laden Sie ein, sich durch die 360-Grad-Welten zu bewegen und an der ein oder anderen Station zu verweilen, um Neues zu entdecken“, sagt Sandra Fischer aus der Abteilung Kommunikation. Sie hat zusammen mit einem externen Partner die Rundgänge konzipiert und realisiert.

Den Auftakt macht eine Tour durch die Beschleunigeranlage BESSY II. Weitere Rundgänge, auch am Standort Wannsee, sind in Planung. „Wir wollen mit diesem Angebot in Pandemie-Zeiten ein stückweit für interessierte Menschen geöffnet bleiben und Neugier auf die Welt der Wissenschaft wecken.“

Tour durch den Beschleuniger BESSY II: Folgen Sie dem Weg des Lichts

Wollten Sie immer schon mal durch einen Beschleuniger gehen? Die Touren „Der Weg des Lichts“ und „Das Experiment“ starten beide im Herzen von BESSY II, dem Kontrollraum. Begeben Sie sich an den Ort, an dem die Elektronen mit beinahe Lichtgeschwindigkeit durchrasen und Licht aussenden – den Speicherringtunnel. Dort sehen Sie, welchen Aufwand man betreiben muss, um das begehrte Licht zu erzeugen. Was wir mit diesem Licht alles erforschen können, erleben Sie in der Tour „Das Experiment“.

Hier geht's zu den Rundgängen. Wir wünschen Ihnen viel Spaß dabei!

 Hinweis für unsere Kooperationspartner an BESSY II:

In der Mediathek stehen für Sie 360-Grad-Ansichten („Kugelpanoramen“) verschiedener Experimentierbereiche zur Verfügung. Sie können diese gern zur Erklärung Ihrer Arbeit verwenden (z.B. in Vorträgen oder für Besuchergruppen). Bei Fragen wenden Sie sich an Sandra Fischer.

sz

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.