Neue Talente von Graphen: Durchstimmbare Gitterschwingungen

</p> <p>Die Elektronenmikroskopie zeigt die Graphenprobe (grau), in der der Heliumstrahl ein Lochmuster erzeugt hat, so dass die Dichte periodisch variiert. Dadurch kommt es zur &Uuml;berlagerung von Schwingungsmoden und es &ouml;ffnet sich eine mechanische Bandl&uuml;cke. Die Frequenz dieses phononischen Systems l&auml;sst sich durch mechanische Spannung zwischen 50 MHz und 217 MHz einstellen.&nbsp;</p> <p>

Die Elektronenmikroskopie zeigt die Graphenprobe (grau), in der der Heliumstrahl ein Lochmuster erzeugt hat, so dass die Dichte periodisch variiert. Dadurch kommt es zur Überlagerung von Schwingungsmoden und es öffnet sich eine mechanische Bandlücke. Die Frequenz dieses phononischen Systems lässt sich durch mechanische Spannung zwischen 50 MHz und 217 MHz einstellen. 

© HZB

Technologische Innovationen im letzten Jahrhundert basierten hauptsächlich auf der Kontrolle von Elektronen oder Photonen – im aufstrebenden Forschungsfeld der Phononik geraten nun auch die Schwingungen des Kristallgitters, die Phononen, ins Blickfeld. Ein Team der Freien Universität Berlin und des Helmholtz-Zentrums Berlin hat Graphen mit einem Helium-Ionen-Mikroskop mit einem Lochmuster versehen und dadurch einen phononischen Kristall erzeugt, dessen Resonanzfrequenz sich erstmals in einem breiten Bereich durchstimmen lässt. Dies ist ein echter Durchbruch, der nun im Fachjournal Nano Letters publiziert ist.

Ohne Elektronik und Photonik gäbe es keine Computer, Smartphones, Sensoren und die Informations- und Kommunikationstechnologien wären nicht entstanden. In den kommenden Jahren könnte das neue Feld der Phononik diese Optionen noch beträchtlich erweitern. Denn nun sind auch Gitterschwingungen (Phononen) von Festkörpern ins Blickfeld der Forschung geraten. Um phononische Bauelemente zu realisieren, müsste man allerdings Gitterschwingungen genauso präzise steuern und kontrollieren können, wie es mit Elektronen oder Photonen möglich ist.

Phononische Kristalle als Schlüssel

Der Schlüsselbaustein hierzu ist ein phononischer Kristall, eine künstlich hergestellte Struktur, in der Eigenschaften wie Steifigkeit, Masse oder mechanische Spannung periodisch variieren. Es gibt bereits einige Kandidaten für phononische Bauelemente, die als akustische mechanische Qubits, Wellenleiter, Phononenlinsen und Vibrationsabschirmungen eingesetzt werden. Bisher operierten diese Systeme jedoch nur auf vorab festgelegten Schwingungsfrequenzen. Es war nicht möglich, die Schwingungsfrequenzen kontrolliert zu verändern.

Graphen mit Lochmuster

Nun hat ein Team der Freien Universität Berlin und am HZB erstmals konkret gezeigt, wie diese Kontrolle realisiert werden kann. Sie nutzten dafür Graphen, eine Kohlenstoff-Form, in der die Kohlenstoffatome sich zweidimensional zu einer wabenförmigen Struktur vernetzen.  Mit einem fokussierten Strahl aus Helium-Ionen konnte das Team im Graphen ein periodisches Muster aus Löchern schneiden. Diese Methode steht am CoreLab CCMS (Correlative Microscopy and Spectroscopy) zur Verfügung. „Wir mussten den Prozess optimieren, um ein regelmäßiges Lochmuster in die Graphenfläche zu schneiden, ohne dass sich benachbarte Löcher berühren“, erklärt Dr. Katja Höflich, Gastforscherin am HZB und Gruppenleiterin am Ferdinand-Braun-Institut Berlin. 

Durchstimmbar von 50 MHz bis 217 MHz

Jan N. Kirchhof, Erstautor der nun in Nano Letters publizierten Studie, hat die Schwingungseigenschaften dieses phononischen Kristalls berechnet. Seine Simulationen zeigen, dass in einem bestimmten Frequenzbereich keine Schwingungsmoden zugelassen sind. Die Fachleute bezeichnen dies als mechanische Bandlücke, ein in der Festkörperphysik bekanntes Konzept. Diese Bandlücke kann genutzt werden, um einzelne Moden zu lokalisieren und von der Umgebung abzuschirmen. Das Besondere hier: „Die Simulation zeigt, dass wir das phononische System schnell und gezielt durchstimmen können, von 50 Megahertz bis 217 Megahertz, indem wir durch eine angelegte elektrische Spannung mechanischen Druck generieren“, sagt Jan Kirchhof.  

Neue Anwendungen im Blick

"Wir hoffen, dass unsere Ergebnisse das Feld der Phononik weiter vorantreiben. Wir erwarten, dass wir einige grundlegende physikalische Erkenntnisse gewinnen und Technologien entwickeln, die zu Anwendungen z.B. in ultrasensitiven Photosensoren oder sogar Quantentechnologien führen könnten", erklärt Prof. Kirill Bolotin, Leiter der FU-Arbeitsgruppe. In seiner Gruppe laufen bereits die ersten Experimente mit den neuen phononischen Kristallen aus dem HZB.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.