Wie sich komplexe Schwingungen in einem Quantensystem mit der Zeit vereinfachen

Die Verteilung der Phononen ist zunächst komplex (obere Kurven) und vereinfacht sich mit der Zeit zu einer Gausschen Glockenkurve (untere Kurve).

Die Verteilung der Phononen ist zunächst komplex (obere Kurven) und vereinfacht sich mit der Zeit zu einer Gausschen Glockenkurve (untere Kurve). © S. Sotiriadis / Freie Universität Berlin

Mit einem raffinierten Experiment haben Physiker gezeigt, dass sich in einem eindimensionalen Quantensystem die zunächst komplexe Verteilung von Schwingungen oder Phononen mit der Zeit in eine einfache Gaußsche Glockenkurve verwandeln kann. Das Experiment fand an der Technischen Universität Wien statt, während die theoretischen Überlegungen von einer gemeinsamen Forschergruppe der Freien Universität Berlin und des HZB durchgeführt wurden.

Die Quantenphysik erlaubt es, Aussagen über das Verhalten verschiedenster Vielteilchensysteme auf atomarer Ebene zu treffen, vom Salzkristall bis zum Neutronenstern. In Quantensystemen haben viele Parameter keine konkreten Werte, sondern sind über verschiedene Werte mit bestimmten Wahrscheinlichkeiten verteilt. Oft hat diese Verteilung die Form einer einfachen Gauß'schen Glockenkurve, wie sie auch in klassischen Systemen anzutreffen ist, z. B. die Verteilung der Kugeln im Zufallsbrett (Galton-Nagelbrett). Allerdings folgen nicht alle Quantensysteme diesem einfachen Verhalten und einige können aufgrund von Wechselwirkungen von der Gaußverteilung abweichen.

Prof. Dr. Jens Eisert leitet an der Freien Universität Berlin und am Helmholtz-Zentrum Berlin eine gemeinsame Arbeitsgruppe für Theoretische Physik. Er argumentiert, dass solche Abweichungen mit der Zeit abklingen und gaußverteilt werden, sobald die Wechselwirkungen reduziert werden. Nun konnte er diese Vermutung experimentell untermauern.

Dazu arbeitete das Berliner Team mit einer Gruppe von Experimentalphysikern um Prof. Dr. Jörg Schmiedmayer von der Technischen Universität Wien zusammen. Schmiedmayer und Mitglieder seiner Gruppe, insbesondere Dr. Thomas Schweigler, präparierten ein sogenanntes Bose-Einstein-Kondensat: Dabei handelt es sich um ein Quantensystem aus mehreren tausend Rubidium-Atomen, die mit Hilfe von Magnetfeldern in einer quasi eindimensionalen Konfiguration eingeschlossen und nahe dem absoluten Nullpunkt (50 Nanokelvin) abgekühlt wurden.

"Die Wiener Gruppe hat ein synthetisches Quantensystem geschaffen, in dem die Verteilung der Phononen besonders scharf beobachtet werden kann", erklärt Dr. Marek Gluza, Koautor der Studie und Postdoc bei Jens Eisert. Die Messdaten bilden zunächst die komplexe Dynamik der Phononen ab. Doch die Komplexität geht mit der Zeit verloren und die Verteilung nimmt die Form einer Gaußschen Glockenkurve an.

"Tatsächlich können wir hier sehen, wie sich mit der Zeit eine Gauß-Verteilung herausbildet. Die Natur findet durch ihre physikalischen Gesetze ganz von selbst eine einfache Lösung", kommentiert Jens Eisert.

Das Einzigartige an dem durchgeführten Experiment ist, dass das System im Laufe der Zeit wieder zu der komplexeren Verteilung zurückschwingt. Die Signaturen des komplizierten Zustands tauchen wieder auf. "Wir wissen genau, warum es zurückschwingt und wovon es abhängt", erklärt Gluza. "Das zeigt uns etwas über die Isolation des Systems, denn die Information über die Signaturen hat das System nie verlassen".

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.
  • Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Science Highlight
    21.02.2025
    Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und hocheffizient. Im Außeneinsatz unter realen Wetterbedingungen ist jedoch noch fraglich, wie lange sie stabil bleiben. Dieses Thema greift nun eine internationale Kooperation unter Leitung von Prof. Antonio Abate in der Fachzeitschrift Nature Reviews Materials auf. Die Forschenden untersuchten die Auswirkungen von wiederholten thermischen Zyklen auf Mikrostrukturen und Wechselwirkungen zwischen den verschiedenen Schichten von Perowskit-Solarzellen. Das Fazit: Der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind thermische Spannungen. Daraus lassen sich Strategien ableiten, um die Langzeitstabilität von Perowskit-Solarzellen gezielt zu steigern.