Auf dem Weg zu bleifreien und stabilen Perowskit-Solarzellen

Die Abbildung zeigt die Veränderungen in der Struktur von FASnI3:PEACl-Filmen während der Behandlung bei verschiedenen Temperaturen.

Die Abbildung zeigt die Veränderungen in der Struktur von FASnI3:PEACl-Filmen während der Behandlung bei verschiedenen Temperaturen. © Meng Li/HZB

Die besten Perowskit-Solarzellen schaffen zwar enorme Wirkungsgrade, enthalten aber giftiges Blei. Bleifreie Perowskit-Solarzellen erreichten bislang nur geringe Wirkungsgrade, die zudem schnell abnehmen. Eine neue Arbeit einer internationalen Kooperation zeigt nun, wie sich stabile Perowskit-Schichten herstellen lassen, die Zinn anstelle von Blei enthalten. Dabei schützen organische Verbindungen das Zinn vor Oxidation und sorgen für Stabilität.

Unter den neuen Materialien für Solarzellen gelten die Halogenidperowskite als besonders vielversprechend. Innerhalb weniger Jahre stieg der Wirkungsgrad solcher Perowskit-Solarzellen von einigen wenigen Prozent auf über 25 %. Leider enthalten die besten Perowskit-Solarzellen giftiges Blei, das eine Gefahr für die Umwelt darstellt. Es ist jedoch überraschend schwierig, das Blei durch weniger giftige Elemente zu ersetzen. Eine der besten Alternativen ist Zinn. Halogenidperowskite mit Zinn anstelle von Blei sollten ausgezeichnete optische Eigenschaften aufweisen, aber in der Praxis sind ihre Wirkungsgrade mittelmäßig und nehmen schnell ab. Und diese rasche "Alterung" ist ihr Hauptnachteil: Die Zinnkationen in der Perowskitstruktur reagieren sehr schnell mit Sauerstoff aus der Umgebung, so dass ihre Effizienz abnimmt.

Nun hat eine internationale Kooperation unter der Leitung von Antonio Abate, HZB, und Zhao-Kui Wang, Institut für funktionelle Nano- und weiche Materialien (FUNSOM), Soochow Universität, China, einen Durchbruch erzielt, der einen Weg zu ungiftigen Solarzellen auf Perowskitbasis eröffnet, die über einen langen Zeitraum stabile Leistung bieten. Sie verwenden ebenfalls Zinn anstelle von Blei, haben jedoch durch Einfügen organischer Gruppen in das Material eine zweidimensionale Struktur geschaffen, die zu so genannten 2D-Ruddlesden-Popper-Phasen führt.

"Wir verwenden Phenylethylammoniumchlorid (PEACl) als Zusatz zu den Perowskitschichten. Dann führen wir eine Wärmebehandlung durch, während die PEACl-Moleküle in die Perowskit-Schicht einwandern. Dies führt zu vertikal geordneten Stapeln von zweidimensionalen Perowskit-Kristallen", erklärt Erstautor Dr. Meng Li. Li ist Postdoc in der Gruppe von Abate und hat die enge Zusammenarbeit mit den chinesischen Partnern organisiert. In der Shanghai Synchrotron Radiation Facility (SSRF) konnten sie die Morphologie und die Kristalleigenschaften der Perowskitfilme nach verschiedenen Glühbehandlungen genau analysieren.

Die besten dieser bleifreien Perowskit-Solarzellen erreichten einen Wirkungsgrad von 9,1 Prozent und hohe Stabilitätswerte, sowohl unter Tagesbedingungen als auch im Dunkeln. Die PEACl-Moleküle reichern sich durch die Wärmebehandlung zwischen den kristallinen Perowskit-Lagen an und bilden eine Barriere, die verhindert, dass die Zinn-Kationen oxidieren. „Diese Arbeit ebnet den Weg für effizientere und stabilere bleifreie Perowskit-Solarzellen“ ist Abate überzeugt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.