Corona-Forschung: Konsortium aus Berliner Forschung und Industrie sucht Wirkstoffe

Die Proteinkristalle werden im MX-Labor an BESSY II mit harter Röntgenstrahlung analysiert.

Die Proteinkristalle werden im MX-Labor an BESSY II mit harter Röntgenstrahlung analysiert. © C. Feiler/HZB

An BESSY II konnte Prof. Rolf Hilgenfeld (Uni Lübeck) ein wichtiges Protein des SARS-CoV2-Virus analysieren. Es handelt sich hier um die virale Hauptprotease, die an der Vermehrung des Virus beteiligt ist.

An BESSY II konnte Prof. Rolf Hilgenfeld (Uni Lübeck) ein wichtiges Protein des SARS-CoV2-Virus analysieren. Es handelt sich hier um die virale Hauptprotease, die an der Vermehrung des Virus beteiligt ist. © H.Tabermann/HZB

Die Berliner Biotech-Firma Molox GmbH und ein Team am Helmholtz-Zentrum Berlin (HZB) haben ein Konsortium aus regionalen Forschergruppen und BASF initiiert. Gemeinsam wollen sie einen Startpunkt für die Entwicklung eines möglichen Wirkstoffs gegen das neue Coronavirus identifizieren. Ziele potenzieller Hemmstoffe werden bestimmte SARS-CoV2-Proteine sein, die die Ausbreitung oder Infektiosität der Viren begünstigen. An den Forschungsarbeiten sind auch Wissenschaftlerinnen und Wissenschaftler der Freien Universität Berlin beteiligt.

„Berlin als Wissenschaftsstandort vereint wichtige Großgeräteinfrastruktur mit einem exzellenten Netzwerk von akademischen und industriellen Strukturbiologen und -biologinnen sowie Biochemikerinnen und Biochemikern. Die Wege hier sind kurz, Ressourcen und Expertisen müssen jedoch strategisch koordiniert werden um erfolgreich zu sein“, sagt Dr. Holger von Moeller, der Inhaber der Biotech-Firma Molox.

BESSY II hilft bei der Suche nach Wirkstoffen

Für den Projekterfolg ist der Zugang zu Synchrotronstrahlung essentiell. Diese besonders intensive Strahlung wird durch den Berliner Elektronenspeicherring für Synchrotronstrahlung (BESSY II) bereitgestellt, den das HZB betreibt. Mehrere Forschergruppen der Freien Universität Berlin unter Leitung von Prof. Markus Wahl, Prof. Christian Freund, Dr. Ursula Neu und Prof. Sutapa Chakrabarti arbeiten mit Molox zusammen, um die Proteine herzustellen und anschließend zu kristallisieren. „Das HZB stellt dem gemeinsamen Projekt alle vorhandenen Infrastrukturen zur Verfügung“, erklärt Dr. Manfred Weiss, Leiter der Forschergruppe Makromolekulare Kristallographie (MX) am HZB.

Projektpartner aus der chemischen Industrie

Als erster Projektpartner aus der chemischen Industrie stellt die BASF Mittel bereit, um die Untersuchungen zu starten. Dabei werden Proteinkristalle mit potenziellen Hemmstoff-Substanzen getränkt und anschließend an den MX-Beamlines von BESSY II analysiert. So lässt sich aufdecken, welche Hemmstoff-Komplexe besonders gut die Funktion des Proteins hemmen – diese sollen dann erste Startpunkte für die gezielte Entwicklung von Wirkstoffen sein.

Das Konsortium verhandelt aktuell mit weiteren Partnern, um diese und ihre Substanzbibliotheken hinzu zu gewinnen. „Wir blicken gespannt auf dieses gemeinsame Projekt und hoffen, dass wir sehr schnell neue potenzielle Angriffspunkte für Wirkstoffe gegen SARS-CoV-2 identifizieren können“, sagt Dr. Christian Feiler, Projektleiter am HZB.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.