Katalysatoren: Effiziente Wasserstoffgewinnung mit Struktur

Perowskit-Oxide zeichnen sich durch die Summenformel ABO<sub>3</sub> aus, wobei die Elemente A (gr&uuml;n) und B (blau) auf bestimmten Gitterpl&auml;tzen sitzen und von Sauerstoff-Atomen (rot) umgeben sind.

Perowskit-Oxide zeichnen sich durch die Summenformel ABO3 aus, wobei die Elemente A (grün) und B (blau) auf bestimmten Gitterplätzen sitzen und von Sauerstoff-Atomen (rot) umgeben sind.

Regenerativ erzeugter Wasserstoff gilt als ökologischer Rohstoff der Zukunft. Um ihn durch Elektrolyse effizient aus Wasser herzustellen, setzt die Forschung heute auch auf Perowskit-Oxide. Das Fachmagazin Journal of Physics: Energy hat Dr. Marcel Risch vom Helmholtz-Zentrum Berlin (HZB) eingeladen, den aktuellen Stand der Forschung zu skizzieren.

Industrierohstoffe und Energieträger nachhaltig zu erzeugen, ist eine der größten gesellschaftlichen Herausforderungen unserer Zeit. Ein aussichtsreicher Kandidat dafür ist Wasserstoff. Denn das leichteste aller Elemente kann nicht nur in Brennstoffzellen in elektrische Energie gewandelt werden, als Brenngas dienen oder zu transport- und lagerfähigen synthetischen Treibstoffen verarbeitet werden. Es reduziert auch Erze zu hochwertigem Metall und ist die Basis für chemische Grundstoffe oder Düngemittel.

Wasserstoff aus Wasser

„Die einzig wirklich nachhaltige Quelle für Wasserstoff ist Wasser“, sagt Marcel Risch. Das lässt sich durch elektrischen Strom in seine Bestandteile aufspalten. Dazu erhöhen Säuren oder Laugen die Leitfähigkeit, während zwei Elektroden die elektrische Energie zuführen. An einer der beiden steigt dann gasförmiger Wasserstoff auf, an der anderen Elektrode bildet sich Sauerstoff. „Wie genau der Wasserstoff entsteht, ist wissenschaftlich gut verstanden und die Materialien dafür wurden auch schon optimiert“, erklärt Risch. „Die Herausforderung ist die andere Reaktion, die bei der Wasserspaltung immer ablaufen muss: Die Sauerstoffentwicklung. Die ist weniger gut verstanden.“

Die inneren Werte zählen

Und genau hier steckt großes Potenzial. Denn wenn es gelingt, diesen Teil der Elektrolyse effizienter zu machen und die Energieverluste an der Elektrode zu minimieren, würde sich der Gesamtwirkungsgrad erhöhen. Und damit auch die Wirtschaftlichkeit.

Katalysatoren aus Perowskit-Oxiden

Ein Ansatz, dieses Potenzial zu erschließen, sind spezielle Katalysatoren im Elektrodenmaterial. Neben teuren Edelmetallen wie Iridium haben sich Perowskit-Oxide als eine aussichtsreiche Materialklasse entpuppt. Sporadisch experimentiert wurde damit bereits in den 1970er und 1980er Jahren. In den Fokus der Wissenschaft gerieten sie aber erst 2011. Namensgeber dieser Materialklasse ist ein recht häufig vorkommendes Mineral, das aus Kalzium, Titan und Sauerstoff besteht. Interessant für Wissenschaft und Technik wird es durch seinen inneren Aufbau. „Alle Perowskit-Oxide haben die gleiche charakteristische atomare Anordnung“, erklärt Risch, der am HZB ebenfalls Perowskit-Oxide als Katalysatoren für die Elektrolyse erforscht. „Das hat den Vorteil, dass wir sehr einfach chemische Elemente austauschen können, ohne die Struktur selbst zu verändern.“

Unendliche Varianten

Mit unzähligen Möglichkeiten. So ersetzen Forschungsteams bei einer Probe beispielsweise einen Teil des Titans durch Kobalt und in einer anderen Probe durch Eisen. Anschließend vergleichen sie den Wirkungsgrad beider Perowskite bei der Elektrolyse. „Das macht die Experimente viel besser vergleichbar“, sagt Risch. „Denn wir können einen ganz bestimmten Aspekt der Chemie anpassen, während sich alles andere oft nur marginal ändert.“ Ein Element lässt sich auch durch mehrere andere Elemente ersetzen und das sogar in unterschiedlichen Mengenverhältnissen und Kombinationen. „Bei dem Material mit den bisher besten katalytischen Eigenschaften ist Kalzium durch Barium und Strontium ersetzt. Und anstelle des Titans wurden Kobalt und Eisen in die Perowskitstruktur eingebaut“, erzählt der Forscher.

Maßzahlen für die  gezielte Suche

Die Anzahl theoretisch möglicher Materialien ist also sehr hoch. Die Suche nach der optimalen Element-Kombination könnte schnell zu jener nach der sprichwörtlichen Nadel im Heuhaufen werden. Hier knüpft Risch mit seiner Übersichtsarbeit zu hochgeordneten Perowskitschichten an. Er präsentiert nicht nur den aktuellen Stand der Forschung. Er betrachtet auch zwei Maßzahlen kritisch, die für die Aktivität eines Katalysators vorgeschlagen wurden. „Bei unserem Literaturvergleich haben wir herausgefunden, dass eine oft verwendete Maßzahl für Perowskitschichten als Katalysatoren leider wenig geeignet ist“, fasst Risch zusammen. „Dafür konnten wir aber die Aussagekraft einer anderen vorgeschlagenen Maßzahl bestätigen.“ Die Erkenntnis ist für die weitere Suche nach dem optimalen Katalysator nicht unerheblich. Denn mit einer Maßzahl an der Hand ist es einfacher, gezielt zu optimieren.

Wichtig ist Risch auch eine zweite Erkenntnis, zu der er bei seinen Forschungen kam: „Wir müssen bei der Interpretation der Katalyseergebnisse vorsichtig sein“, sagt er. „Denn manche Perowskite sind Halbleiter und dabei besteht die Gefahr, dass man Halbleitereffekte der Katalyse zuordnet.“ Einfach gesagt: Es muss nicht an mangelnden katalytischen Eigenschaften liegen, wenn ein Material ein schlechter Katalysator ist. Manchmal sorgen Halbleitereffekte dafür, dass die Elektronen nicht dahin kommen, wo sie gebraucht werden. Dagegen haben die Materialforscher aber einige Tricks auf Lager, sodass sie diese Materialien leicht wieder zurück ins Rennen und die nachhaltige Produktion von Wasserstoff vielleicht einen entscheidenden Schritt nach vorn bringen können.

Zur Person:

Dr. Marcel Risch hat den ERC Grant ME4OER eingeworben und leitet eine eigene Gruppe am HZB. Er untersucht mit seinem Team den Mechanismus der elektrolytischen Sauerstoffentwicklungsreaktion durch Wasserspaltung und wie sich die Katalyse dieser Reaktion sich optimieren lässt.

 

Zur Publikation:

Der Übersichtsartikel, den Marcel Risch mit seinem Doktoranden Denis Antipin verfasst hat, ist nun im Fachmagazin Journal of Physics: Energy im Sonderband „Focus on Ion-related Properties of Oxides at the Nanoscale: From Fundamentals to Applications“ erschienen.

 

 

 

Kai Dürfeld

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.
  • Beschleunigerphysik: Erster Elektronenstrahl im SEALab
    Nachricht
    03.04.2025
    Beschleunigerphysik: Erster Elektronenstrahl im SEALab
    Weltweit zum ersten Mal hat das SEALab-Team am HZB in einem supraleitenden Hochfrequenzbeschleuniger (SRF Photoinjektor) einen Elektronenstrahl aus einer Multi-Alkali-Photokathode (Na-K-Sb) erzeugt und auf relativistische Energien beschleunigt. Dies ist ein echter Durchbruch und eröffnet neue Optionen für die Beschleunigerphysik.