Neuer Detektor beschleunigt die Proteinkristallographie
Nur 60 Sek. Messzeit mit dem neuen Detektor reichten schon aus, um die Elektrondichte des PETase-Enzyms zu ermitteln. Sie zeigt alle strukturellen Merkmale des Enzyms. © HZB
Der neue PILATUS-Detektor wurde an der MX-Beamline 14.1 in Betrieb genommen. © HZB
An einer der drei MX-Beamlines am HZB wurde letzte Woche ein neuer Detektor installiert. Im Vergleich zum alten Detektor ist der neue besser, schneller und empfindlicher. Er ermöglicht es, binnen kürzester Zeit vollständige Datensätze von komplexen Proteinen aufzunehmen.
Proteine bestehen aus tausenden von Bausteinen, die komplexe Architekturen mit gefalteten oder verwickelten Bereichen bilden können. Für die Funktion des Proteins im Organismus spielt ihre Gestalt jedoch die entscheidende Rolle. Mit Hilfe der makromolekularen Kristallographie an BESSY II ist es möglich, die Architektur von Proteinmolekülen zu entschlüsseln. Dafür werden winzige Proteinkristalle mit Röntgenlicht aus der Synchrotronquelle BESSY II durchleuchtet. Aus den gewonnenen Beugungsmustern lässt sich die Morphologie der Moleküle errechnen.
Nun hat das MX-Team an BESSY II an der MX-Beamline 14.1 einen neuen Detektor in Betrieb genommen, der zwei- bis dreimal schneller als bisher arbeitet. Als Probe analysierte das Team einen Kristall aus dem Enzym PETase. PETase ist in der Lage, den Kunststoff PET teilweise abzubauen. In weniger als einer Minute konnte der Detektor einen vollständigen Beugungsdatensatz aufzeichnen, der Daten aus einem Winkelbereich von 180 Grad umfasst. Der Datensatz besteht aus 1200 Bildern, die jeweils 45 Millisekunden lang der Röntgenstrahlung ausgesetzt waren. „Die resultierende Elektronendichte war von ausgezeichneter Qualität und zeigte alle strukturellen Merkmale des Enzyms“, erklärt Dr. Manfred Weiss, der das MX-Team an BESSY II leitet.
Der Erfolg der HZB MX-Beamlines wird durch mehr als 3000 PDB-Einträge aus experimenteller Strahlzeit von mehr als hundert internationalen Nutzergruppen aus dem akademischen Bereich und pharmazeutischen Forschungsunternehmen dokumentiert.
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=21100;sprache=en),
- Link kopieren
-
Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
-
Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
-
Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.