Sehen, riechen, schmecken: Wie Biomoleküle in Sinneszellen funktionieren

</p> <p>Rhodopsin vor der Aktivierung durch Licht (links) und danach (rechts): Die Anregung f&uuml;hrt im Innern des Molek&uuml;ls zu &Auml;nderungen an funktionalen Gruppen (Lupe), die sich auf das gesamte Molek&uuml;l auswirken.

Rhodopsin vor der Aktivierung durch Licht (links) und danach (rechts): Die Anregung führt im Innern des Moleküls zu Änderungen an funktionalen Gruppen (Lupe), die sich auf das gesamte Molekül auswirken. © E. Ritter/HZB

Ein Team hat analysiert, wie sich das Biomolekül Rhodopsin nach der Aktivierung durch Licht verändert. Rhodopsin spielt beim Sehen eine zentrale Rolle, ist aber auch ein Prototyp für Rezeptoren in anderen Sinnesorganen. Ein neu entwickeltes Infrarotspektrometer an BESSY II hat es ermöglicht, diese Untersuchung erstmals unter natürlichen Bedingungen durchzuführen. Mit der neuen Methode lassen sich schnelle, irreversible Reaktionen mit nur einer einzigen Messung beobachten. Bislang mussten dafür tausende solcher Reaktionen ausgewertet werden. Viele biologische Prozesse sind jedoch irreversibel und lassen sich nicht zyklisch wiederholen.

Zeitaufgelöste Infrarotspektroskopie im Submillisekunden-Bereich ist eine wichtige Methode, um die Beziehung zwischen Funktion und Struktur in Biomolekülen zu untersuchen. Dies funktioniert jedoch nur dann, wenn die Reaktion viele Tausende Mal wiederholt werden kann. Das ist aber bei einer Vielzahl von biologischen Prozessen nicht der Fall: Sie basieren vielmehr auf sehr schnellen und irreversiblen Reaktionen, beispielsweise in den Sinneszellen der Netzhaut beim Sehen.

Féry-Infrarotspektrometer: Eine einzige Messung reicht

Nun hat ein Team um Dr. Ulrich Schade (HZB) und Dr. Eglof Ritter (Humboldt-Universität zu Berlin) an der IRIS-Beamline von BESSY II ein neues Instrument entwickelt, das mit einer einzigen Messung auch solche irreversiblen Reaktionen erfassen kann. Die Zeitauflösung beträgt dabei wenige Mikrosekunden. Das Instrument, ein Féry-Spektrometer, nutzt einen hochempfindlichen Detektor (sog. Focal-Plane-Array-Detektor) und spezielle Optiken, um die brillante Infrarotstrahlung der Synchrotronquelle BESSY II optimal auszunutzen. Das Team konnte damit erstmals die Aktivierung von Rhodopsin unter nahezu physiologischen Bedingungen beobachten.

Nagelprobe für das System: Rhodopsin

„Wir haben Rhodopsin verwendet, da es nach Lichtanregung irreversibel zerfällt und somit eine echte Nagelprobe für das System ist“, erklärt Ritter, Erstautor der Studie. Das Protein Rhodopsin ist das Sehpigment in den Stäbchen der Netzhaut des Auges. Schon einzelne Photonen können Rhodopsin aktivieren - damit ermöglicht es die Wahrnehmung von geringsten Lichtintensitäten. Darüber hinaus ist Rhodopsin der Prototyp einer großen Klasse von Rezeptoren, die unter anderem für Riechen, Schmecken, Druckempfinden, Hormonrezeption usw. verantwortlich sind, und die alle auf eine sehr ähnliche Art und Weise funktionieren.

Das Team untersuchte außerdem ein weiteres spannendes Protein erstmals im Infrarotbereich: Actinorhodopsin. Dieses Molekül ist in der Lage, Lichtenergie in einen elektrischen Strom umzuwandeln – eine Eigenschaft, die sich manche Bakterien zur Gewinnung elektrochemischer Energie für ihren Stoffwechsel zu Nutzen machen.

„Mit der neuen Methode lassen sich die molekularen Reaktionsmechanismen aller irreversiblen Prozesse (oder langsam zyklischen Prozesse) untersuchen, zum Beispiel im Bereich der Energiekonversion und –Speicherung“, betont Schade, der das IRIS-Team leitet.

Die Arbeit erschien im Journal of Physical Chemistry Letters (2019): Féry Infrared Spectrometer for Single-Shot Analysis of Protein Dynamics. Eglof Ritter, Ljiljana Puskar, So Young Kim, Jung Hee Park, Klaus Peter Hofmann, Franz Bartl, Peter Hegemann, Ulrich Schade

DOI: 10.1021/acs.jpclett.9b03099

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.