Krebsforschung an BESSY II: Bindungsmechanismen von therapeutischen Substanzen entschlüsselt

Auf dem Cover kündigt die Zeitschrift Chemmedchem die Arbeit an.

Auf dem Cover kündigt die Zeitschrift Chemmedchem die Arbeit an. © Chemmedchem/VCH Wiley

In Tumorzellen ist die DNA im Vergleich zu normalen Körperzellen verändert. Wie solche Veränderungen verhindert oder gehemmt werden können, ist ein spannendes Forschungsgebiet mit großer Relevanz für die Entwicklung von Krebsbehandlungen. Ein interdisziplinäres Team hat nun durch Proteinkristallographie an BESSY II die möglichen  Bindungsmechanismen von bestimmten therapeutischen Substanzen aus der Gruppe der Tetrazolhydrazide an ein entscheidendes Protein in der Zelle analysiert.

Bestimmte Proteine wie die Humanen Histon-Demethylasen, darunter auch das Protein KDM4, spielen eine Rolle bei der Entstehung von Tumorzellen. Sie binden an die DNA und verändern sie, so dass die Zelle krebsartig werden kann. Für eine Therapie sind Wirkstoffe interessant, die solche Veränderungen hemmen oder sogar rückgängig machen können.

Der Biochemiker Prof. Dr. Udo Heinemann vom Max-Delbrück Centrum in Berlin-Buch untersucht solche Prozesse. Nun hat er in Zusammenarbeit mit Chemikern um Prof. Dr. Andreas Link von der Uni Greifswald und dem Team um Dr. Manfred Weiss am HZB untersucht, wie und an welchen Stellen bestimmte therapeutische Substanzen aus der Gruppe der Tetrazolhydrazide an diese Proteinmoleküle andocken und so ihre schädliche Wirkung hemmen.

KDM4-Proteinkristalle in Wirkstofflösungen getränkt

Link stellte zunächst Variationen von Tetrazolhydrazid-Substanzen her. Für die Strukturanalyse mussten Kristalle aus KDM4-Proteinen gezüchtet werden – eine schwierige Aufgabe, die Dr. Piotr Malecki und Manfred Weiss am HZB übernommen hatten. Die KDM4-Proteinkristalle wurden im Anschluss in jeweils einer bestimmten Substanz getränkt, bevor sie an den MX-Beamlines von BESSY II mit starkem Röntgenlicht analysiert wurden. Eine verfeinerte Auswertung zeigte nicht nur die dreidimensionale Architektur des KDM4-Proteins, sondern auch, wo genau an dem KDM4-Molekül die aktiven Substanzen angedockt hatten.

Wirkstoff-Design

„Diese Klasse von Substanzen wurde bislang noch nicht strukturell untersucht“, erklärt Manfred Weiss.  Und Udo Heinemann vom MDC führt aus: „Wir werden nun auswerten, wo es Chancen gibt, innerhalb der 3D-Struktur des KDM4 noch stärker anzudocken. Dann können wir möglicherweise auch Wirkstoffe entwickeln, die das KDM4 noch stärker hemmen und damit das Potential zu einem Therapeutikum besitzen.“

Die Arbeit ist erschienen in ChemMedChem (2019):
“Structure-based screening of tetrazolylhydrazide inhibitors vs. KDM4 histone demethylases”, Piotr H. Małecki, Nicole Rüger, Martin Roatsch, Oxana Krylova, Andreas Link, Manfred Jung, Udo Heinemann, Manfred S. Weiss
DOI: 10.1002/cmdc.201900441

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.