Perowskit-Solarzellen: Mögliche Ursache für hohe Wirkungsgrade aufgedeckt

Die Zeichnung verdeutlicht, wie das organische Methylammoniumion (CH<sub>3</sub>NH<sub>3</sub><sup>+</sup>) mit den Jodid-Ionen wechselwirkt. Durch die Verschiebung der Jod-Atome aus der gemeinsamen Ebene mit Blei geht das Symmetriezentrum verloren.

Die Zeichnung verdeutlicht, wie das organische Methylammoniumion (CH3NH3+) mit den Jodid-Ionen wechselwirkt. Durch die Verschiebung der Jod-Atome aus der gemeinsamen Ebene mit Blei geht das Symmetriezentrum verloren. © HZB

Ein HZB-Team hat durch kristallographische Analysen an der Synchrotronquelle Diamond Light Source (DLS) in Großbritannien erstmals nachgewiesen, dass Hybrid-Perowskite ohne Inversions-Zentren auskristallisieren. Durch Wechselwirkungen zwischen den organischen Molekülen und benachbarten Jod-Atomen können sich so ferroelektrische Domänen bilden, die über weitere Effekte höhere Wirkungsgrade in Solarzellen ermöglichen. In anorganischen Perowskiten kann diese ferroelektrische Domänenbildung nicht stattfinden.

Solarzellen auf Basis von Perowskiten haben in nur wenigen Jahren enorm hohe Wirkungsgrade erreicht. Dabei zeichnen sich Solarzellen mit Hybrid-Perowskiten, die aus anorganischen wie organischen Komponenten bestehen, durch besonders hohe Wirkungsgrade aus, sind allerdings bislang noch nicht langzeitstabil. Anorganische Perowskit-Halbleiter wie CsPbI3 sind zwar weniger effizient, gelten jedoch aufgrund ihrer höheren Stabilität ebenfalls als interessante Materialien für die Photovoltaik.

Schwierige Strukturanalyse

Bisher ging man davon aus, dass sich hybride und anorganische Perowskite im kristallinen Aufbau nicht grundsätzlich unterscheiden. Bei der Herstellung von Perowskit-Materialien bildet sich jedoch in der Regel nicht ein einziger großer Kristall, sondern unzählige winzige Zwillingskristalle. Dies macht die Analyse der Kristallstruktur kompliziert und fehleranfällig.

Kristalle von MAPbI3 untersucht

Nun ist einem HZB-Team um Prof. Dr. Susan Schorr und Dr. Joachim Breternitz ein Durchbruch im Verständnis der kristallinen Struktur von hybriden Perowskiten gelungen. Das HZB-Team untersuchte kristalline Proben von MAPbI3, dem prominentesten Vertreter dieser Materialien. Die Analysen fanden an der Synchrotronquelle Diamond Light Source (DLS) in Großbritannien statt.

Ferroelektrische Domänen?

Dabei konnten sie auch klären, ob überhaupt ferroelektrische Effekte in diesem hybriden Perowskitmaterial möglich sind. Ferroelektrische Domänen können in Solarzellen günstige Auswirkungen haben und den Wirkungsgrad steigern. Messungen dieses Effekts an Proben sind jedoch schwierig – ein Nullergebnis kann entweder bedeuten, dass es keinen ferroelektrischen Effekt gibt, oder dass sich die ferroelektrischen Domänen gegenseitig aufheben.

Kein Inversionszentrum in MAPbI3

„Aus kristallographischer Sicht gibt es einige notwendige Bedingungen für Ferroelektrizität: Ein ferroelektrischer Effekt kann nur dann auftreten, wenn die Kristallstruktur kein Inversionszentrum enthält und zusätzlich ein permanentes polares Moment aufweist“ erklärt Breternitz.

Bislang ging man davon aus, dass die Kristallstruktur von MAPbI3 ein Inversionszentrum enthält. Dies ist jedoch nicht der Fall, zeigen die Ergebnisse der Kristallstrukturanalyse: „Dabei spielt das organische Kation MA+ eine tragende Rolle“, erklärt Breternitz. Denn das MA-Molekül ist nicht kugelsymmetrisch und auch deutlich größer als ein einzelnes Atom, sodass es mit den benachbarten Jod-Atomen ein polares Moment erzeugt.

Unterschiede zu anorganischen Perowskiten

Damit sind ferroelektrische Domänen in MAPbI3 möglich. Bei anorganischen Perowskiten, in denen anstelle des MA-Moleküls ein Alkali-Atom eingebaut ist, greift dieser Mechanismus nicht. Damit sind möglicherweise die stabileren anorganischen Perowskite grundsätzlich etwas begrenzter in ihrem Wirkungsgrad als ihre hybriden Verwandten.

Die Studie ist in Angewandte Chemie (2019) publiziert: “Role of the Iodide–Methylammonium Interaction in the Ferroelectricity of CH3NH3PbI3”. J. Breternitz, F. Lehmann, S. A. Barnett, H. Nowell, S. Schorr

DOI: 10.1002/anie.201910599

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.