IM FOKUS: Mit BESSY II im Kampf gegen den Plastikmüll

An den MX-Beamlines von BESSY II konnten Gottfried Palm, Gert Weber und Manfred Weiss die 3D-Architektur von MHETase aufklären.

An den MX-Beamlines von BESSY II konnten Gottfried Palm, Gert Weber und Manfred Weiss die 3D-Architektur von MHETase aufklären. © F. Krawatzek/HZB

Das Enzym MHETase kann den Kunststoff PET aufspalten.

Das Enzym MHETase kann den Kunststoff PET aufspalten. © M. Künsting/HZB

MHETase bei der Arbeit: MHET, ein Teilmolekül von PET, wird in die Grundbausteine Terephthalsäure und Ethylenglykol zerlegt.

MHETase bei der Arbeit: MHET, ein Teilmolekül von PET, wird in die Grundbausteine Terephthalsäure und Ethylenglykol zerlegt. © Gert Weber/HZB

Kunststoffe sind wunderbare Materialien: extrem vielseitig und nahezu ewig haltbar. Doch genau das ist ein Problem, denn nach nur rund 100 Jahren Kunststoffproduktion befinden sich inzwischen Plastik-Partikel überall, im Grundwasser, in den Ozeanen, in der Luft und in der Nahrungskette. 

Nur ein winziger Bruchteil der Kunststoffe wird aktuell durch energie- und kostenintensive Verfahren recycelt. Dabei verlieren die Kunststoffe bisher deutlich an Qualität oder hängen wiederum von ‚frischem‘ Rohöl ab.

Ein wichtiger Kunststoff ist PET, der unter anderem für die Herstellung von Plastikflaschen verwendet wird. Zirka 50 Millionen Tonnen PET werden jährlich neu produziert. Nun könnte es ein neues Verfahren geben, PET in die Grundstoffe zu zerlegen und ohne Qualitätseinbußen zu recyceln.

Japanische Forscher entdeckten Bakterien, die PET abbauen

2016 hat eine Gruppe japanischer Forscher ein Bakterium entdeckt, das auf PET-Kunststoffen wachsen und sich teilweise davon ernähren kann. Dieses Bakterium besitzt zwei besondere Enzyme, die in der Lage sind, PET-Kunststoff abzubauen: die PETase und die MHETase.

Zunächst zerlegt die PETase den Kunststoff in kleinere Bausteine, vorwiegend MHET. Dann spaltet die MHETase diese in die zwei PET-Grundbausteine, Terephthalsäure und Ethylenglykol. Beide Bausteine sind sehr wertvoll für eine Neusynthese von PET, so dass erstmals ein nachhaltiger geschlossener Recyclingkreislauf – ohne Verwendung von Erdöl – möglich wird.

Die Struktur der PETase wurde 2018 aufgeklärt

Im April 2018 gelang es mehreren Arbeitsgruppen schließlich, die Struktur des Enzyms PETase aufzuklären, auch Experimente an der Lichtquelle Diamond waren daran beteiligt. Doch die PETase ist nur ein Teil der Lösung, genauso wichtig ist es, die Struktur des zweiten Enzyms, der MHETase, zu erhalten.  

Die komplexe Struktur der MHETase an BESSY II entschlüsselt

„Die MHETase ist deutlich größer als die PETase und noch komplexer. Ein einziges MHETase-Molekül besteht aus 600 Aminosäuren, das sind mehr als 4000 Atome. Die MHETase besitzt eine Oberfläche, die etwa doppelt so groß ist wie die von PETase. Damit gibt es auch wesentlich mehr Optionen, die Oberfläche dieses Enzyms zu modifizieren und für die Zerlegung von PET zu optimieren“, erklärt der Biochemiker und Strukturbiologe Dr. Gert Weber von der gemeinsamen Forschungsgruppe Proteinkristallographie am Helmholtz-Zentrum Berlin und der Freien Universität Berlin.

Als Vertretungsprofessor an der Uni Greifswald nahm Weber 2016 dort Kontakt mit Prof. Dr. Uwe Bornscheuer am Institut für Biochemie auf, der sich bereits mit plastikabbauenden Enzymen beschäftigte. Gemeinsam entwickelten sie die Idee, auch die Struktur der MHETase zu entschlüsseln und mit Hilfe dieser Einsicht das Enzym für den PET-Abbau zu optimieren. Dazu mussten sie zunächst das Enzym aus Bakterienzellen gewinnen und im Anschluss reinigen.

In dieser Kooperation ist es gelungen, an der Berliner Synchrotronquelle BESSY II die dreidimensionale komplex gefaltete Architektur von MHETase zu entschlüsseln.

"Der MHETase bei der Arbeit zuschauen"

„Damit man in der Struktur sieht, wie das Enzym an PET bindet und es zersetzt, benötigt man ein Plastikfragment, das an MHETase bindet, aber nicht gespalten wird“, erklärt Weber. Ein Mitarbeiter aus dem damaligen Arbeitskreis Weber an der Universität Greifswald, Dr. Gottfried Palm, zerschnitt dafür eine PET-Flasche, zersetzte das PET chemisch und synthetisierte daraus ein kleines Plastikfragment, das an MHETase binden, aber von dieser nicht mehr gespalten werden kann. Aus dieser ‚blockierten‘ MHETase wurden dann winzige Kristalle für die Strukturuntersuchungen am HZB gezüchtet. „Durch diese Strukturuntersuchungen können wir der MHETase gewissermaßen ‚bei der Arbeit zuschauen‘ und daraus Strategien entwickeln, das Enzym zu optimieren“, erläutert Weber.

„Durch die gemeinsame Forschungsgruppe haben wir an BESSY II die Möglichkeit, jederzeit sehr rasch an den viel gebuchten MX-Beamlines Messzeit anzubieten“, sagt Dr. Manfred Weiss, der für die MX-Beamlines an BESSY II verantwortlich ist. Die MX-Beamlines (MX steht für Makromolekulare Kristallographie) sind darauf spezialisiert, winzige kristalline Proben aus organischen, sehr großen Molekülen zu durchleuchten. Aus den Daten lassen sich die 3D-Faltungen dieser Makromoleküle entschlüsseln.

Tatsächlich zeigt die dreidimensionale Architektur der MHETase einige Besonderheiten: Enzyme wie die MHETase, binden zunächst an ihr Zielmolekül, bevor eine chemische Reaktion eintritt. Für jedes abzubauende Molekül braucht man ein maßgeschneidertes Enzym: „Wir können jetzt genau lokalisieren, an welchen Stellen das MHET-Molekül an die MHETase andockt und wie es dadurch in seine beiden Bestandteile Terephthalsäure und Ethylenglykol gespalten wird“, berichtet Weber.

Die nächsten Schritte: Die Forscher wollen die Effizienz der MHETase steigern

Allerdings sind PETase und MHETase aktuell noch nicht besonders effizient. „Kunststoffe gibt es erst seit wenigen Jahrzehnten in diesem Ausmaß – selbst Bakterien mit ihrer schnellen Generationenfolge und raschen Anpassungsfähigkeit schaffen es nicht in einer so kurzen Zeit, durch den evolutionären Prozess von Versuch und Irrtum eine perfekte Lösung zu entwickeln“, erklärt Weber.

„Nachdem wir die Struktur dieses sehr wichtigen Enzyms aufklären konnten, können wir nun auch Varianten planen, herstellen und biochemisch charakterisieren, die deutlich höhere Aktivität als die natürliche MHETase zeigen und sogar gegenüber einem weiteren Zwischenprodukt des PET Abbaus, BHET, aktiv sind", ergänzt Bornscheuer.

Das Ziel ist eine echte Kreislaufwirtschaft für Stoffe aus PET. Dazu ist der Zugang zum Licht von BESSY II wichtig.

Perspektivisch will Bornscheuer daher daran arbeiten, PETase und MHETase systematisch für ihre Aufgabe, die Zerlegung von PET, zu optimieren. Gert Weber plant, diese Studien durch weitere strukturbiologische Arbeiten zu ergänzen, um die plastikverdauenden Enzyme schrittweise hin zur Anwendung zu bringen. Dazu ist der Zugang zu dem Messstationen und der IT-Infrastruktur des HZB unerlässlich.

Diese Arbeit weist einen Weg hin zu einem „perfekten Recycling“: Künftig könnten solche optimierten Enzyme in biotechnologischen geschlossenen Kreisläufen produziert werden, um PET-Kunststoffe und (perspektivisch) auch weitere Polymere wirklich in ihre Grundbausteine zu zerlegen. Die Kunststoffproduktion wäre dann - Mülltrennung vorausgesetzt - ein geschlossener Kreislauf und nicht mehr vom Rohöl abhängig. Ein Teil des Plastik-Müllproblems wäre damit lösbar.

Das Fokusthema basiert auf der am 12.04.2019 veröffentlichten News.

Publiziert in Nature Communications (2019): "Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate"; G.J. Palm, L. Reisky, D. Böttcher, H. Müller, E.A.P. Michels, C. Walczak, L. Berndt, M.S. Weiss, U.T. Bornscheuer and G. Weber

arö (bearb. sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.