Hauchdünn und extrem effizient: Dünnschicht-Tandemzelle aus Perowskit- und CIGSe-Halbleitern

Eine extrem dünne Zwischenschicht verbessert die Eigenschaften der CIGSe-Perowskit-Tandemzelle.

Eine extrem dünne Zwischenschicht verbessert die Eigenschaften der CIGSe-Perowskit-Tandemzelle. © HZB

Ein HZB-Team hat eine Tandem-Solarzelle mit reinen Dünnschicht-Solarzellen aus Perowskit und CIGSe hergestellt und charakterisiert. Dabei setzten sie auf ein einfaches, robustes Produktionsverfahren, das sich auch für die Aufskalierung auf große Flächen eignet. Die Tandem-Solarzelle besitzt einen sehr hohen Wirkungsgrad von 21.6 %. Durch weitere Optimierung könnte sie Wirkungsgrade über 30 % erreichen.

Tandem-Solarzellen bestehen aus zwei Halbleitern mit unterschiedlichen Bandlücken. Dadurch können sie einen größeren Anteil des Sonnenspektrums zur Stromerzeugung nutzen. Besonders erfolgreich ist dieses Konzept, wenn man konventionelle Absorberschichten wie Silizium oder Kupfer-Indium-Gallium-Selenid (CIGSe) mit dem neuen Metall-Halogenid-Halbleiter Perowskit kombiniert. Denn Perowskite wandeln die blauen, energiereichen Anteile des Lichts in effizient in elektrische Energie um, während Silizium oder CIGSe eher rote und nahinfrarote Anteile wirksam umwandeln.

CIGSe- und Perowskit-Dünnschicht kombiniert

HZB-Forscher haben nun eine Dünnschicht-Solarzelle aus CIGSe mit einer dünnen Schicht Perowskit kombiniert. Die CIGSe-Dünnschicht wurde auf einem Substrat aufgewachsen. Dabei entsteht eine CIGSe-Oberfläche, die typischerweise etwas unregelmäßig bzw. rau ist. Das erschwerte bisher die Aufbringung der Perowskit-Topzelle mit nasschemischen Methoden.

Ultradünne Zwischenschicht verbessert die Tandemzelle

Erstmalig hat das Team vom HZB nun in Zusammenarbeit mit der TU Eindhoven die Eigenschaften der Tandem-Solarzelle verbessert. Dafür haben sie eine ultradünne, aber konform wachsende Zwischenschicht auf die CIGSe-Schicht aufgetragen und erst anschließend im HySPRINT-Labor des HZB die Perowskitschicht aufgeschleudert. Die so produzierte Tandem-Solarzelle wandelt 21,6 % des Sonnenspektrums in elektrische Energie um. Dabei bleibt die erzeugte Leistung stabil.

Herstellung kostet wenig Energie und Material

Zwar erreichen Tandemzellen aus Silizium und Perowskit noch höhere Wirkungsgrade, aber theoretisch könnten auch CIGSe-Perowskit-Tandemzellen diese Wirkungsgrade erreichen.  Dazu kommt, dass die neue CIGSe-Perowskit-Tandemzelle nur aus Dünnschichten besteht, so dass der Material- und Energieverbrauch bei ihrer Herstellung extrem gering ist.

Für die industrielle Produktion geeignet

„Sehr wichtig ist auch, dass diese Tandemzelle auf einer rauen, unbehandelten CIGSe-Bottomzelle hergestellt wurde, was die Produktion vereinfacht und einen enormen Vorteil in Richtung Industrialisierung darstellt“, betont Prof. Dr. Rutger Schlatmann, Direktor des HZB-Instituts PVcomB.

Die Tandem-Solarzelle wurde auf einer Fläche von 0,8 Quadratzentimetern realisiert, was deutlich größer ist als die quadratmillimetergroßen Flächen, die in der Laborforschung üblich sind.  „Rekordwerte werden erst ab Flächen von einem Quadratzentimeter anerkannt, dazu fehlt hier aber nicht viel. Daher werden wir nun diese Tandem-Solarzelle und ihre enorme Leistungsfähigkeit von einer unabhängigen Einrichtung zertifizieren lassen“, sagt Prof. Dr. Steve Albrecht, der am HZB eine BMBF-geförderte Nachwuchsgruppe leitet.

Effizienz von mehr als 30 % möglich

Mit dem Elektronenmikroskop und weiteren Messungen analysierten die Wissenschaftler den Schichtaufbau der Tandemzelle. Dabei konnten Erstautor Dr. Marko Jost, Postdoc in der Nachwuchsgruppe von Albrecht, und seine Kollegen auch die Beiträge der einzelnen Subzellen zur Leistung der Tandemzelle ermitteln. Die Arbeit zeigt damit Wege auf, um monolithische Perowskit-CIGSe-Tandemzellen weiter zu optimieren und Effizienzen über 30 % zu erreichen.

 

Zur Studie:

Publiziert in ACS Energy Lett. (2019), 21.6%-efficient Monolithic Perovskite/Cu(In,Ga)Se2 Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces; Marko Jost, Tobias Bertram, Dibyashree Koushik, Jose Marquez, Marcel Verheijen, Marc Daniel Heinemann, Eike Köhnen, Amran Al-Ashouri, Steffen Braunger, Felix Lang, Bernd Rech, Thomas Unold, Mariadriana Creatore, Iver Lauermann, Christian A. Kaufmann, Rutger Schlatmann, and Steve Albrecht

DOI: 10.1021/acsenergylett.9b00135

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.