Herausragende Masterarbeit zur Struktur und Funktion eines Bakterien-Enzyms gewürdigt

Lena Graß hat für ihre Masterarbeit einen Preis der GBM erhalten.

Lena Graß hat für ihre Masterarbeit einen Preis der GBM erhalten. © FU Berlin

Die Doktorandin Lena Graß aus der Arbeitsgruppe Strukturbiochemie der Freien Universität Berlin ist am 17. Dezember 2018 mit dem Masterpreis der Gesellschaft für Biochemie und Molekularbiologie e.V. (GBM) ausgezeichnet worden. Für ihre Masterarbeit an der Freien Universität Berlin und den MX-Beamlines von BESSY II hat sie die Struktur und Funktion einer so genannten RNA-Helikase entschlüsselt.

Diese bakteriellen Enzyme können die Aktivitäten von RNA Molekülen verändern und darüber den Lebenszyklus von Bakterien beeinflussen. Im Rahmen ihrer Masterarbeit hat Lena Graß eine RNA Helikase aus dem Darmbakterium Escherichia coli untersucht. Ein nahe verwandtes Enzym aus dem Bakterium Borrelia burgdorferi, dem Erreger der Borreliose, ist für die Infektiosität dieser Bakterien essentiell. Ein besseres Verständnis dieses Enzyms könnte helfen, neue Wirkstoffe zu entwickeln, um das Enzym zu blockieren.

Graß hat das Enzym über gentechnische Verfahren hergestellt. Wie das Enzym im Detail aufgebaut und gefaltet ist, konnte sie mit Hilfe der makromolekularen Röntgenkristallographie an den MX-Strahlrohren des Joint Berlin MX-Laboratory an BESSY II aufklären.

Graß begann 2015 ihr Masterstudium der Biochemie an der Eberhard Karls Universität Tübingen und absolvierte ihre Masterarbeit in der Arbeitsgruppe Strukturbiochemie der Freien Universität Berlin in Kooperation mit der Gruppe Makromolekulare Kristallographie am Helmholtz-Zentrum Berlin. Anfang 2018 schloss sie ihren Master mit der Bestnote ab. Aktuell promoviert sie in der Arbeitsgruppe Strukturbiochemie an der Freien Universität.

red.


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.