Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
Victoriia Saveleva (rechts) erhielt den Ernst Eckhard Koch Preis für die Analyse von Katalysator-Oberflächen. © M. Setzpfandt/HZB
Prof. Gerd Schneider (Laudator), die Preisträger Dr. Christian David und Prof. Alexei Erko und Prof. Mathias Richter vom Freundeskreis des HZB (v.l.n.r.). © M. Setzpfandt/HZB
Am 6. Dezember 2018 vergab der Freundeskreis Helmholtz-Zentrum Berlin den Ernst-Eckhard-Koch-Preis für eine herausragende Promotionsarbeit auf dem Gebiet der Forschung mit Synchrotronstrahlung am HZB oder bei DESY sowie den Europäischen Innovationspreis Synchrotronstrahlung. Die Preisverleihungen fanden während des 10. Nutzertreffens am HZB statt.
Prof. Mathias Richter, Vorsitzender des Freundeskreises, sprach von Auswahlentscheidungen zwischen exzellenten Vorschlägen, die den beiden Auswahlkomitees nicht leicht gefallen seien.
Der Ernst-Eckhard-Koch-Preis ging an Dr. Victoriia Saveleva für ihre Promotion an der Universität Straßburg zu in-situ-Untersuchungen von elektrochemischen Prozessen mit Photoemissionsspektroskopie. Bei ihren Experimenten bei BESSY II standen insbesondere Reaktionen an Katalysator-Oberflächen aus Ruthenium und Iridium während der elektrolytischen Aufspaltung von Wasser im Fokus. Inzwischen forscht Saveleva als Postdoktorandin am Paul Scherrer Institut in der Schweiz.
Der Innovationspreis Synchrotronstrahlung 2018 ging an Dr. Christian David, ebenfalls vom Paul Scherrer Institut, sowie an Prof. Alexei Erko, der kürzlich vom HZB an das Institut für Angewandte Photonik (IAP) in Berlin-Adlershof wechselte. Die beiden Physiker wurden für ihre innovativen Beiträge zur Anwendung diffraktiver Röntgenoptiken gewürdigt, die komplexe Röntgen-Experimente mit hoher Auflösung ermöglichen. Die Laudatio hielt Prof. Gerd Schneider vom HZB. Diesmal würden nicht die „Ring-Macher“ ausgezeichnet, die die Beschleuniger entwickeln, sondern diejenigen, die die „Diamanten für den Ring“ geschliffen hätten, erklärte Schneider bildhaft. Der Innovationspreis Synchrotronstrahlung wird von der SPECS GmbH und der BESTEC GmbH gesponsert.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=20231;sprache=enamp
- Link kopieren
-
Batterieforschung: Alterungsprozesse operando sichtbar gemacht
Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
-
Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
-
Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.