Meilenstein für bERLinPro: Photokathode mit hoher Quanteneffizienz

Photokathode im supraleitenden Photoinjektorsystem.

Photokathode im supraleitenden Photoinjektorsystem. © J. Kühn/HZB

Das supraleitende Photoinjektorsystem (1): Die Photokathode (3) wird durch einen grünen Laser (2) angeregt und emittiert Elektronen (4), die in der supraleitenden RF-Kavität beschleunigt werden.

Das supraleitende Photoinjektorsystem (1): Die Photokathode (3) wird durch einen grünen Laser (2) angeregt und emittiert Elektronen (4), die in der supraleitenden RF-Kavität beschleunigt werden. © Britta Mießen

Photokathode nach Herstellung im Präparationssystem.

Photokathode nach Herstellung im Präparationssystem. © J. Kühn/HZB

Ein Team am HZB hat den Herstellungsprozess von Photokathoden optimiert, so dass diese nun hohe  Quanteneffizienz besitzen. Damit stehen geeignete Photokathoden zur Verfügung, um 2019 den ersten Elektronenstrahl in bERLinPro zu erzeugen. 

Am HZB entwickeln Teams aus der Beschleunigerphysik und SRF im Rahmen des Projekts bERLinPro einen supraleitenden Linearbeschleuniger mit Energierückgewinnung (Energy Recovery Linac). Darin wird ein intensiver Elektronenstrahl beschleunigt, der dann für unterschiedliche Anwendungen genutzt werden kann – wie die Erzeugung brillanter Synchrotronstrahlung. Nach dieser Nutzung werden die Elektronenpakete zum Linearbeschleuniger zurückgeleitet, wo sie nahezu ihre gesamte restliche Energie abgeben. Diese Energie steht damit wieder für die Beschleunigung neuer Elektronenpakete zur Verfügung.

Photokathode als Elektronenquelle

Ein wichtiger Bestandteil des Konzepts ist die Elektronenquelle. Die Elektronen werden durch Beleuchtung einer Photokathode mit einem grünen Laserstrahl erzeugt. Dabei gibt die sogenannte Quanteneffizienz an, wie viele Elektronen das Photokathoden-Material bei einer bestimmten Laserwellenlänge und Laserleistung emittiert. Besonders hohe Quanteneffizienz im sichtbaren Bereich haben bialkalische Antimonide. Allerdings sind diese Dünnfilme hochreaktiv und damit sehr empfindlich, sodass sie nur im Ultrahochvakuum funktionieren.

Herstellung optimiert

Nun hat ein HZB-Team um Martin Schmeißer, Dr. Julius Kühn, Dr. Sonal Mistry und Prof. Thorsten Kamps die Photokathode soweit entwickelt, dass sie für bERLinPro einsatzbereit ist. Sie optimierten dafür den Herstellungsprozess für Photokathoden aus Cäsium, Kalium und Antimon auf einem Molybdän-Substrat. Der neue Prozess liefert die gewünschte hohe Quanteneffizienz und Stabilität. Auch bei niedrigen Temperaturen degradieren die Photokathoden nicht, zeigten die Untersuchungen. Das ist eine zentrale Voraussetzung für den Betrieb in einer supraleitenden Elektronenquelle, wo die Kathode bei Temperaturen weit unter dem Nullpunkt betrieben werden muss.

Quanteneffizienz übertrifft Anforderungen

Mit ausführlichen Untersuchungen konnten die Physiker belegen: Auch nach dem Transport und Einschleusen in das Photokathoden-Transfer-System des SRF-Photoinjektors war die Quanteneffizienz der Photokathode noch ca. fünfmal höher als nötig, um den maximalen Strahlstrom [RA1] bei bERLinPro zu erreichen.

Meilenstein für bERLinPro

 „Ein wichtiger Meilenstein für bERLinPro ist damit erreicht. Wir haben nun die Photokathoden verfügbar, um in 2019 den ersten Elektronenstrahl aus unserem SRF Photoinjektor in bERLinPro zu erzeugen“, sagt Professor Dr. Andreas Jankowiak, der das HZB-Institut für Beschleunigerphysik leitet.

 

Publiziert in Physical Review Accelerators and Beams (2018): "Addressing challenges related to the operation of Cs-K-Sb photocathodes in SRF photoinjectors" ; M. A. H. Schmeisser, S. Mistry, H. Kirschner, S. Schubert, A. Jankowiak, T. Kamps, J. Kühn

doi:10.1103/PhysRevAccelBeams.21.113401

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.