In Schwerelosigkeit Metalle geschäumt

Röntgenbild eines flüssigen Metallschaums in Schwerelosigkeit

Röntgenbild eines flüssigen Metallschaums in Schwerelosigkeit

Röntgenbild eines flüssigen Metallschaums bei 1,8-facher Erdanziehung

Röntgenbild eines flüssigen Metallschaums bei 1,8-facher Erdanziehung

Erfolgreich haben drei Forscher des Berliner Hahn-Meitner-Instituts (HMI) in Schwerelosigkeit untersucht, wie die Erdanziehung die Eigenschaften eines Metallschaums beeinflusst. Sie haben ihre Experimente in einem umgebauten Airbus 300 durchgeführt. Das Flugzeug fliegt auf einer Art Buckelbahn. Dabei steigt es immer wieder zunächst steil auf, um danach im freien Fall entlang einer Wurfparabel zu fliegen. Während eines solchen Fluges herrscht immer wieder kurzzeitig fast doppelte Erdanziehung, die von einer 20 Sekunden dauernden Phase der Schwerelosigkeit abgelöst wird.

Erfolgreich haben drei Forscher des Berliner Hahn-Meitner-Instituts (HMI) in Schwerelosigkeit untersucht, wie die Erdanziehung die Eigenschaften eines Metallschaums beeinflusst. Sie haben ihre Experimente in einem umgebauten Airbus 300 durchgeführt. Das Flugzeug fliegt auf einer Art Buckelbahn. Dabei steigt es immer wieder zunächst steil auf, um danach im freien Fall entlang einer Wurfparabel zu fliegen. Während eines solchen Fluges herrscht immer wieder kurzzeitig fast doppelte Erdanziehung, die von einer 20 Sekunden dauernden Phase der Schwerelosigkeit abgelöst wird.

Für ihre Versuche haben die Wissenschaftler ein transportables Labor in der Größe eines Umzugskartons gebaut. Darin: ein Ofen, in dem der Metallschaum erzeugt wird und eine Röntgenanlage, die die Evolution des Schaums festhält. Die mitgebrachten Filme zeigen, was mit dem flüssigen Schaum während des Fluges passiert: bei starker Erdanziehung bildet sich am unteren Rand des Schaums ein großer Tropfen flüssigen Metalls. In Schwerelosigkeit verschwindet der Tropfen sofort - seine Flüssigkeit verteilt sich gleichmäßig über den gesamten Schaum.

Metallschaum soll einer der Werkstoffe der Zukunft werden: leicht und zugleich stabil könnte er im Auto oder Flugzeug helfen, Gewicht zu sparen ohne dass die Sicherheit leidet. Die Herstellung der schaumförmigen Metalle erinnert an Kuchenbacken: man vermischt Metallpulver mit einem Treibmittel, presst die Mischung zusammen und heizt sie auf. Das Metall wird flüssig und das Treibmittel gibt ein Gas frei, welches die Blasen entstehen lässt. Kühlt man das Ganze ab, hat man den fertigen Metallschaum. Forscher interessieren sich besonders für die Zeit, in der der Schaum noch flüssig ist, denn diese entscheidet über die Eigenschaften des Schaums. Zwei Effekte spielen dabei eine besondere Rolle: Drainage und Koaleszenz. HMI-Forscher Francisco Garcia-Moreno erklärt ihre Bedeutung am Beispiel eines Bierschaums: "Zum einen kann man beobachten, wie das Bier im Schaum nach unten fließt, so dass die Wände der Schaumbläschen immer dünner werden. Das ist Drainage. Zum anderen platzen oft Wände zwischen zwei Bläschen, so dass ein größeres Bläschen entsteht. Das ist Koaleszenz". Während des Airbus-Fluges hat die Zeit gerade gereicht, die Drainage zu beobachten. Die Filme des wandernden Metalltropfens sind das erste Ergebnis. Eine genaue wissenschaftliche Auswertung wird folgen.

Aber der Flug hatte noch ein weiteres Ziel: die Ausrüstung sollte für ein weite-res spektakuläres Experiment getestet werden, welches im Frühjahr 2008 stattfinden soll. Dann wird die ganze Apparatur im Rahmen der MASER 11-Mission in einer unbemannten Rakete der schwedischen Raumfahrtagentur SSC sechs Minuten in Schwerelosigkeit fliegen. Bei diesem Experiment wird man auch die Koaleszenz untersuchen können. Da die Geräte auf den Raketenflug hin geplant werden müssen, haben die schwedischen Kollegen von Anfang an beim Aufbau und auch während des Parabelfluges im Airbus geholfen. Einmal haben sie es sogar geschafft, die Anlage in einer fünfminütigen Pause zwischen zwei Phasen der Schwerelosigkeit zu reparieren. Sie wissen jetzt, was sie tun müssen, damit ein ähnliches Problem nicht auch in der Rakete entsteht.

Nicht alle Filme, die die Forscher mitgebracht haben, zeigen aufgehende Metallschäume. Garcia-Moreno und seine Kollegen Catalina Jimenez und Manas Mukherjee konnten nämlich auch einige Phasen der Schwerelosigkeit nutzen, um das ungewohnte Gefühl zu genießen und einander beim Schweben und Purzelbäumeschlagen zu filmen.

Der Flug fand im Rahmen eines Projekts der Europäischen Raumfahrtagentur ESA statt und wurde auch von dieser finanziert. Das Flugzeug wird von der französischen Firma Novespace betrieben.

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.