In Schwerelosigkeit Metalle geschäumt

Röntgenbild eines flüssigen Metallschaums in Schwerelosigkeit

Röntgenbild eines flüssigen Metallschaums in Schwerelosigkeit

Röntgenbild eines flüssigen Metallschaums bei 1,8-facher Erdanziehung

Röntgenbild eines flüssigen Metallschaums bei 1,8-facher Erdanziehung

Erfolgreich haben drei Forscher des Berliner Hahn-Meitner-Instituts (HMI) in Schwerelosigkeit untersucht, wie die Erdanziehung die Eigenschaften eines Metallschaums beeinflusst. Sie haben ihre Experimente in einem umgebauten Airbus 300 durchgeführt. Das Flugzeug fliegt auf einer Art Buckelbahn. Dabei steigt es immer wieder zunächst steil auf, um danach im freien Fall entlang einer Wurfparabel zu fliegen. Während eines solchen Fluges herrscht immer wieder kurzzeitig fast doppelte Erdanziehung, die von einer 20 Sekunden dauernden Phase der Schwerelosigkeit abgelöst wird.

Erfolgreich haben drei Forscher des Berliner Hahn-Meitner-Instituts (HMI) in Schwerelosigkeit untersucht, wie die Erdanziehung die Eigenschaften eines Metallschaums beeinflusst. Sie haben ihre Experimente in einem umgebauten Airbus 300 durchgeführt. Das Flugzeug fliegt auf einer Art Buckelbahn. Dabei steigt es immer wieder zunächst steil auf, um danach im freien Fall entlang einer Wurfparabel zu fliegen. Während eines solchen Fluges herrscht immer wieder kurzzeitig fast doppelte Erdanziehung, die von einer 20 Sekunden dauernden Phase der Schwerelosigkeit abgelöst wird.

Für ihre Versuche haben die Wissenschaftler ein transportables Labor in der Größe eines Umzugskartons gebaut. Darin: ein Ofen, in dem der Metallschaum erzeugt wird und eine Röntgenanlage, die die Evolution des Schaums festhält. Die mitgebrachten Filme zeigen, was mit dem flüssigen Schaum während des Fluges passiert: bei starker Erdanziehung bildet sich am unteren Rand des Schaums ein großer Tropfen flüssigen Metalls. In Schwerelosigkeit verschwindet der Tropfen sofort - seine Flüssigkeit verteilt sich gleichmäßig über den gesamten Schaum.

Metallschaum soll einer der Werkstoffe der Zukunft werden: leicht und zugleich stabil könnte er im Auto oder Flugzeug helfen, Gewicht zu sparen ohne dass die Sicherheit leidet. Die Herstellung der schaumförmigen Metalle erinnert an Kuchenbacken: man vermischt Metallpulver mit einem Treibmittel, presst die Mischung zusammen und heizt sie auf. Das Metall wird flüssig und das Treibmittel gibt ein Gas frei, welches die Blasen entstehen lässt. Kühlt man das Ganze ab, hat man den fertigen Metallschaum. Forscher interessieren sich besonders für die Zeit, in der der Schaum noch flüssig ist, denn diese entscheidet über die Eigenschaften des Schaums. Zwei Effekte spielen dabei eine besondere Rolle: Drainage und Koaleszenz. HMI-Forscher Francisco Garcia-Moreno erklärt ihre Bedeutung am Beispiel eines Bierschaums: "Zum einen kann man beobachten, wie das Bier im Schaum nach unten fließt, so dass die Wände der Schaumbläschen immer dünner werden. Das ist Drainage. Zum anderen platzen oft Wände zwischen zwei Bläschen, so dass ein größeres Bläschen entsteht. Das ist Koaleszenz". Während des Airbus-Fluges hat die Zeit gerade gereicht, die Drainage zu beobachten. Die Filme des wandernden Metalltropfens sind das erste Ergebnis. Eine genaue wissenschaftliche Auswertung wird folgen.

Aber der Flug hatte noch ein weiteres Ziel: die Ausrüstung sollte für ein weite-res spektakuläres Experiment getestet werden, welches im Frühjahr 2008 stattfinden soll. Dann wird die ganze Apparatur im Rahmen der MASER 11-Mission in einer unbemannten Rakete der schwedischen Raumfahrtagentur SSC sechs Minuten in Schwerelosigkeit fliegen. Bei diesem Experiment wird man auch die Koaleszenz untersuchen können. Da die Geräte auf den Raketenflug hin geplant werden müssen, haben die schwedischen Kollegen von Anfang an beim Aufbau und auch während des Parabelfluges im Airbus geholfen. Einmal haben sie es sogar geschafft, die Anlage in einer fünfminütigen Pause zwischen zwei Phasen der Schwerelosigkeit zu reparieren. Sie wissen jetzt, was sie tun müssen, damit ein ähnliches Problem nicht auch in der Rakete entsteht.

Nicht alle Filme, die die Forscher mitgebracht haben, zeigen aufgehende Metallschäume. Garcia-Moreno und seine Kollegen Catalina Jimenez und Manas Mukherjee konnten nämlich auch einige Phasen der Schwerelosigkeit nutzen, um das ungewohnte Gefühl zu genießen und einander beim Schweben und Purzelbäumeschlagen zu filmen.

Der Flug fand im Rahmen eines Projekts der Europäischen Raumfahrtagentur ESA statt und wurde auch von dieser finanziert. Das Flugzeug wird von der französischen Firma Novespace betrieben.


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.