Bestnoten für das BESSY FEL Projekt

Der Wissenschaftsrat hat in seiner heute vorgestellten Stellungnahme zu zwei Großgeräten der naturwissenschaftlichen Grundlagenforschung die Förderung des BESSY Freie Elektronen Lasers unter Auflagen empfohlen. Es gäbe derzeit keine Initiative, die sich in Bezug auf die technischen Rahmenbedingungen und der wissenschaftlichen Kompetenz des Teams mit dem BESSY Projekt vergleichen ließe, so die Gutachter weiter.

Als eine Art "Super-Stroboskop" erzeugt der FEL extrem kurze und extrem helle Röntgenpulse und erlaubt so wissenschaftliche Untersuchungen jenseits des derzeit Möglichen. Die Forscher erwarten, dass sie mit dem FEL Momentaufnahmen chemischer Reaktionen aufzeichnen können und tiefe Einblicke in moderne Materialien und in biologische Prozesse erhalten. Die Exzellenz des wissenschaftlichen Programms hatte der Wissenschaftsrat bereits in seiner Stellungnahme von 2002 bestätigt.

Das nun evaluierte technische Design hat überzeugt. Die Gutachter des Wissenschaftsrats schlagen vor, eine 3-4 jährige Entwicklungsphase zu finanzieren, in der das Konzept durch den Bau und Betrieb einer zweistufigen FEL Kaskade als Basis der großen Anlage umgesetzt werden soll. Für deren Realisierung sollte eine für Großgeräte in Deutschland übliche Finanzierung angestrebt werden.

 "Wir sind alle begeistert von dem Votum des Wissenschaftsrats und werden die Entwicklung des FEL weiter vorantreiben", gibt Eberhard Jaeschke, der technische Direktor, die Stimmung bei BESSY wieder. "Wir bedanken uns bei allen Kollegen, die das Projekt unterstützt haben." Neben den vielen Projektpartnern habe sich Staatsekretär Husung persönlich für das FEL Projekt eingesetzt. Die Projektentwicklung wurde durch die Technologiestiftung mit einer Förderung aus dem Zukunftsfonds des Landes Berlin in Höhe von 2,4 Mio. EUR unterstützt.

Das Konzept eines FEL der zweiten Generation verbindet die vorhandene Spitzentechnologie auf dem Gebiet supraleitender Linearbeschleuniger mit dem Einsatz eines Hochleistungslasers. "Dadurch werden sich die Eigenschaften der Röntgenpulse exakt kontrollieren lassen", beschreibt der wissenschaftliche Direktor Wolfgang Eberhardt eine herausragende Qualität des FEL. "Mit dieser Präzision werden viele Forschergruppen wissenschaftliches Neuland betreten." 

In Freie Elektronen Lasern werden Elektronen in dichten Paketen auf nahezu Lichtgeschwindigkeit beschleunigt und durch lange periodische Magnetstrukturen (Undulatoren) geführt. Dabei erzeugen sie sehr intensives Laser-ähnliches Licht auswählbarer Wellenlänge. Beim BESSY-FEL läuft ein Laserpuls gemeinsam mit dem beschleunigten Elektronenbündel durch den Undulator und prägt den Elektronen seine Eigenschaften auf. Dies erlaubt die Erzeugung von kurzen, reproduzierbaren Pulsen. Dabei wird die Wellenlänge des Lasers über mehrere Stufen in den Röntgenbereich überführt.

Die neue Technik erfordert viel Erfahrung in Beschleuniger- und Lasertechnologie. Die langjährige Erfahrung des BESSY Teams auf dem Gebiet der Konzeption und des Betriebs von Großgeräten der Synchrotronstrahlungsforschung ist die beste Voraussetzung, um die Herausforderungen, die mit dieser neuen Technik verbunden sind, zu bewältigen. So ist es kürzlich BESSY Wissenschaftlern gelungen, durch kontrollierte Wechselwirkung von Laserpuls und Elektronen im BESSY II Speicherring diese Technologie zu demonstrieren. Die Exzellenz des FEL Teams wird durch die enge Zusammenarbeit mit dem Max-Born-Institut in Adlershof und mit DESY in Hamburg verstärkt.


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.