Steigert Unordnung die Effizienz von Solarzellen?

Dünnschichtsolarzellen aus Chalkopyriten, so genannte CIS-Zellen (wie z.B. Kupfer-Indium-Sulfid und Kupfer-Indium-Selenid) weisen in der polykristallinen Form im Gegensatz zu Silizium-Zellen höhere Effizienzen auf als in der monokristallinen Form. Forscher des Hahn- Meitner-Instituts Berlin haben nun erstmals einen Nachweis geliefert, der dieses Phänomen erklären könnte.

Hindernisse für den Ladungstransport - Korngrenzen in Halbleiterkristallen

In polykristallinen Materialien bilden sich Korngrenzen, wenn zwei Kristalle aufeinander stoßen. Diese Korngrenzen sind Kristallstörungen und bilden elektrisch geladene Defekte. Sie sind für die Qualität der Bauelemente schädlich, da sie die Anzahl der vom Licht generierten Ladungsträger durch Rekombination reduzieren. Bei diesem Effekt treffen zwei Ladungsträger mit entgegengesetzten Vorzeichen aufeinander und "löschen sich aus". Rekombinierte Ladungsträger können nicht mehr zum elektrischen Strom beitragen. Außerdem stellen Korngrenzen eine Barriere für den Ladungstransport dar.

Vor kurzem wurden auch Korngrenzen theoretisch vorhergesagt, die keine elektrische Ladung, aber trotzdem eine Barriere aufweisen. "Wir haben speziell für den Nachweis dieser neutralen Korngrenzenbarriere Kristalle aufgewachsen und konnten an diesen nun erstmals überhaupt eine neutrale Korngrenzenbarriere nachweisen", erläutert Projektleiterin Dr. Susanne Siebentritt vom Hahn- Meitner-Institut Berlin. Was die Forscher erstaunt, ist der Umstand, dass diese neutralen Grenzen ein Hindernis für den Ladungstransport bilden: "Bisher gingen wir davon aus, dass nur geladenen Korngrenzen eine Barriere darstellen. Dass neutrale Grenzen ebenso ein Hindernis für den Ladungstransport darstellen, könnte weit reichende Konsequenzen haben", berichtet Dr. Sascha Sadewasser, Mitentdecker der neuen Struktur.

Die neutrale Korngrenzenbarriere könnte einer der Gründe sein, warum in Chalkopyriten unerwarteterweise polykristalline Solarzellen effizienter sind als einkristalline: An der Barriere wird wahrscheinlich die Rekombination unterdrückt. "Dieser erste Nachweis wird der Entwicklung von Dünnschichtsolarzellen aus Chalkopyriten wichtige Entwicklungsimpulse liefern", so Siebentritt weiter.

Mono- und polykristalline Halbleiter

Die meisten heutzutage eingesetzten Halbleiter, wie z.B. Computerchips, sind monokristallin, das heißt sie bilden ein einheitliches, homogenes Kristallgitter. Auch die effizientesten Solarzellen aus Silizium sind monokristallin. Im Gegensatz dazu bestehen polykristalline Schichten aus vielen kleinen Einzelkristallen, die durch die so genannten Korngrenzen voneinander getrennt werden. Polykristalline Schichten sind deutlich einfacher und kostengünstiger zu produzieren. Daher konzentriert sich die Entwicklung von preiswerten Solarzellen zunehmend auf polykristalline Materialien. Chalkopyrite stehen an der Schwel- le zur Massenproduktion, da sie neben der polykristallinen Struktur auch vielfach dünnere Schichten und so erhebliche Material- und Kostenersparnisse ermöglichen. "Für uns Forscher und auch für Produzenten von Solarzellen sind diese Materialien sehr interessant, da hier unter anderem die polykristallinen Zellen effizienter sind als die monokristallinen", schließt Siebentritt.

Die Ergebnisse der Berliner Forscher wurden als Titelbeitrag in der renommierten Fachzeitschrift "Physical Review Letters" Anfang Oktober 2006 präsentiert.

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.