Margarita Russina erhält Promotionspreis mit Arbeit über atomare Diffusionsprozesse bei der Glasbildung

Den Hahn-Meitner-Promotionspreis erhält am 1. Dezember 1999 die Physikerin Dr. Margarita Russina. Der Preisträgerin war es in besonderer Weise gelungen, die wissenschaftlichen Inhalte ihrer hervorragenden Promotionsarbeit in anschaulicher und für die Öffentlichkeit verständlicher Form darzustellen.

Der Hahn-Meitner-Promotionspreis ist mit 10.000 Mark dotiert. Er wird alle zwei Jahre von einer Jury verliehen, die sich aus Wissenschaftlern und Journalisten zusammensetzt. Ausgeschrieben wurde der Preis unter den Doktoranden, die am Hahn-Meitner-Institut mit hervorragenden Ergebnissen promoviert hatten. Mit der Preisvergabe will das Hahn-Meitner-Institut junge Nachwuchswissenschaftler motivieren, sich verstärkt um die Vermittlung ihrer Forschungsarbeiten an ein breites Publikum zu bemühen. An dem aktuellen Wettbewerb waren 18 Doktoranden beteiligt.

Die Preisträgerin Margarita Russina studierte an der Staatlichen Universität Moskau Physik. Ihre Promotionsarbeit unter der Betreuung von Prof. Dr. Ferenc Mezei erfolgte in Berlin an der Technischen Universität und am Hahn-Meitner-Institut. In dieser experimentellen Arbeit mit Neutronenstreuung am Forschungsreaktor des Hahn-Meitner-Instituts untersuchte die Wissenschaftlerin die physikalischen Prozesse bei der Entstehung amorpher Strukturen – sogenannter Glasphasen – in erstarrenden Schmelzen.

Margarita Russina fand typische Bewegungsmuster der Atome, die für das Zustandekommen einer Glasphase beim Übergang vom flüssigen zum festen Zustand verantwortlich sind. Diesen Prozess konnte Frau Russina als ein schnelles kollektives Fließen ganzer Gruppen von Atomen bestimmen. Damit hat sie die Natur des sogenannten Beta-Prozess zum ersten Mal aufgeklärt.

Das kollektive kettenartige Fließen in der Nähe des Phasenübergangs ist dabei ein eher selten auftretendes Ordnungsprinzip das nicht, wie es die Regel ist, durch die Diffusionsbewegung von Einzelatomen bestimmt wird. Kenntnisse dieses Phänomens – einem spontanen Auftreten von räumlich inhomogenen Bewegungsarten in einem homogenen Material – sind auch in anderen Bereichen der Physik von aktueller Bedeutung.

Dr. Margarita Russina

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.