Margarita Russina erhält Promotionspreis mit Arbeit über atomare Diffusionsprozesse bei der Glasbildung

Den Hahn-Meitner-Promotionspreis erhält am 1. Dezember 1999 die Physikerin Dr. Margarita Russina. Der Preisträgerin war es in besonderer Weise gelungen, die wissenschaftlichen Inhalte ihrer hervorragenden Promotionsarbeit in anschaulicher und für die Öffentlichkeit verständlicher Form darzustellen.

Der Hahn-Meitner-Promotionspreis ist mit 10.000 Mark dotiert. Er wird alle zwei Jahre von einer Jury verliehen, die sich aus Wissenschaftlern und Journalisten zusammensetzt. Ausgeschrieben wurde der Preis unter den Doktoranden, die am Hahn-Meitner-Institut mit hervorragenden Ergebnissen promoviert hatten. Mit der Preisvergabe will das Hahn-Meitner-Institut junge Nachwuchswissenschaftler motivieren, sich verstärkt um die Vermittlung ihrer Forschungsarbeiten an ein breites Publikum zu bemühen. An dem aktuellen Wettbewerb waren 18 Doktoranden beteiligt.

Die Preisträgerin Margarita Russina studierte an der Staatlichen Universität Moskau Physik. Ihre Promotionsarbeit unter der Betreuung von Prof. Dr. Ferenc Mezei erfolgte in Berlin an der Technischen Universität und am Hahn-Meitner-Institut. In dieser experimentellen Arbeit mit Neutronenstreuung am Forschungsreaktor des Hahn-Meitner-Instituts untersuchte die Wissenschaftlerin die physikalischen Prozesse bei der Entstehung amorpher Strukturen – sogenannter Glasphasen – in erstarrenden Schmelzen.

Margarita Russina fand typische Bewegungsmuster der Atome, die für das Zustandekommen einer Glasphase beim Übergang vom flüssigen zum festen Zustand verantwortlich sind. Diesen Prozess konnte Frau Russina als ein schnelles kollektives Fließen ganzer Gruppen von Atomen bestimmen. Damit hat sie die Natur des sogenannten Beta-Prozess zum ersten Mal aufgeklärt.

Das kollektive kettenartige Fließen in der Nähe des Phasenübergangs ist dabei ein eher selten auftretendes Ordnungsprinzip das nicht, wie es die Regel ist, durch die Diffusionsbewegung von Einzelatomen bestimmt wird. Kenntnisse dieses Phänomens – einem spontanen Auftreten von räumlich inhomogenen Bewegungsarten in einem homogenen Material – sind auch in anderen Bereichen der Physik von aktueller Bedeutung.

Dr. Margarita Russina

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Martin Keller zum neuen Präsidenten der Helmholtz-Gemeinschaft gewählt
    Nachricht
    30.10.2024
    Martin Keller zum neuen Präsidenten der Helmholtz-Gemeinschaft gewählt
    Die Helmholtz-Gemeinschaft hat den international renommierten Wissenschaftler Martin Keller aus den USA als neuen Präsidenten gewonnen. Keller lebt seit fast drei Jahrzehnten in den USA und hatte dort verschiedene wissenschaftliche Leitungspositionen in führenden Institutionen inne. Derzeit leitet er das National Renewable Energy Laboratory (NREL) in Golden, Colorado. Seine Amtszeit bei Helmholtz beginnt am 1. November 2025.