Einblick in Verlustprozesse in Perowskit-Solarzellen ermöglicht Verbesserung der Effizienz

Die untersuchte Perowskit-Zelle hat bereits eine Fl&auml;che von 1 cm<sup>2</sup>.

Die untersuchte Perowskit-Zelle hat bereits eine Fläche von 1 cm2. © Uni Potsdam

<p class="MsoPlainText">Mit zus&auml;tzlichen Beschichtungen zwischen dem Perowskit-Halbleiter und den Loch- und Elektronentransportschichten (rote und blaue Linien) konnte das Team der Uni Potsdam den Wirkungsgrad weiter steigern.

Mit zusätzlichen Beschichtungen zwischen dem Perowskit-Halbleiter und den Loch- und Elektronentransportschichten (rote und blaue Linien) konnte das Team der Uni Potsdam den Wirkungsgrad weiter steigern. © Uni Potsdam

In Perowskit-Solarzellen gehen Ladungsträger vor allem durch Rekombination an Defekten an den Grenzflächen verloren. Rekombination an Defekten im Inneren der Perowskit-Schicht begrenzt  dagegen die Leistungsfähigkeit der Zellen gegenwärtig nicht. Diese interessante Einsicht konnten Teams der Universität Potsdam und am Helmholtz-Zentrum Berlin (HZB)  nun mit quantitativ äußerst genauen Photolumineszenz-Messungen an 1 cm2 großen Perowskit-Absorberschichten gewinnen. Ihre Ergebnisse tragen zur gezielten  Verbesserung von Perowskit-Solarzellen bei und sind nun in Nature Energy publiziert.

Selbst Solarzellen aus einem perfekten Wundermaterial würden niemals hundert Prozent des Sonnenlichts in elektrische Energie umwandeln. Denn die theoretisch maximal erreichbare Leistung ist begrenzt durch die Lage der  Energiebänder der Elektronen und durch die nicht vermeidbare Abstrahlung von Photonen (thermodynamische oder Shockley-Queisser-Grenze). Bei der Bandlücke von Silizium liegt diese Grenze bei 33 Prozent. Doch selbst dieser Wert wird in Wirklichkeit nicht erreicht. Denn Defekte unterschiedlicher Art sorgen dafür, dass ein Teil der durch Sonnenlicht freigesetzten Ladungsträger wieder verloren geht. Um sich dem Maximalwert anzunähern, gilt es daher die verschiedenen Defekte in Solarzellen zu untersuchen und zu ermitteln, welche Defekte auf welche Weise zu Verlusten führen. 

Die neuen Stars: Metallorganische Perowskite

Als besonders spannende, neue Materialklasse für Solarzellen gelten metallorganische Perowskit-Absorberschichten – in nur zehn Jahren ließ sich ihr Wirkungsgrad von drei Prozent auf über zwanzig Prozent erhöhen, eine rasante Erfolgsgeschichte. Nun ist es einem Team um Prof. Dr. Dieter Neher, Universität Potsdam und Dr. Thomas Unold, HZB, gelungen, die entscheidenden Verlustprozesse in Perowskit-Solarzellen zu identifizieren und damit den Wirkungsgrad dieser Zellen deutlich zu verbessern.

An bestimmten Defekten oder Fehlstellen im Kristallgitter der Perowskit-Schicht können Ladungsträger, also Elektronen oder „Löcher“, die gerade durch Sonnenlicht freigesetzt wurden, wieder rekombinieren und so verlorengehen. Ob diese Defekte aber bevorzugt im Inneren der Perowskit-Schicht sitzen oder eher an der Grenzfläche zwischen Perowskit- und Transportschicht, das war bislang unklar.

Verluste im Detail analysiert

Um dies herauszufinden, nutzten die Kooperationspartner die Methode der Photolumineszenz mit hoher Präzision und Orts- und Zeitauflösung. Mit Laserlicht regten sie die quadratzentimetergroße Perowskit-Schicht an und erfassten, wo und wann das Material als Antwort auf die Anregung wiederum Licht abstrahlte. „Diese Messmethode ist bei uns so präzise, dass wir die Anzahl der ausgestrahlten Photonen genau angeben können“, erklärt Unold. Und nicht nur das, auch die Energie der abgestrahlten Photonen wurde mit einer hyperspektralen CCD-Kamera genau erfasst und analysiert.

„Wir konnten so an jedem Punkt der Zelle die Verluste ausrechnen und dabei feststellen, dass die schädlichsten Defekte sich an den Grenzflächen zwischen der Perowskit-Absorberschicht und den Ladungstransportschichten befinden“, berichtet Unold. Dies ist eine wichtige Information, um Perowskit-Solarzellen weiter zu verbessern, etwa durch Zwischenschichten, die sich günstig auswirken oder durch veränderte Herstellungsmethoden.

Steigerung des Wirkungsgrads gelungen

Mithilfe dieser Erkenntnisse ist es der Gruppe um Prof. Dr. Dieter Neher und Dr. Martin Stolterfoht an der Uni Potsdam gelungen, die Grenzflächenrekombination zu verringern und dadurch den Wirkungsgrad der 1 cm2 Perowskit-Solarzellen auf mehr als 20 % zu erhöhen.

Zur Publikation in Nature Energy (2018):Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells; Martin Stolterfoht, Christian M. Wolff, José A. Márquez, Shanshan Zhang,Charles J. Hages,Daniel Rothhardt, Steve Albrecht, Paul L. Burn, Paul Meredith, Thomas Unold and Dieter Neher
Doi:10.1038/s41560-018-0219-8

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.