Shutdown BESSY II: Die Arbeiten haben begonnen

<div id="infowindow_7baf4b2e2c_2d5f6a_2d11d2_2d8f20_2d0000c0e166dc_7d" class="infowindow_7baf4b2e2c_2d5f6a_2d11d2_2d8f20_2d0000c0e166dc_7d infoValueContainer">
<div class="readOnlyInfoValue">Blick in die Experimentierhalle von BESSY II. HZB / D.Butensch&ouml;n&nbsp;</div>
</div>

Blick in die Experimentierhalle von BESSY II. HZB / D.Butenschön 

Ab 30. Juli 2018 wird BESSY II für mehrere Wochen abgeschaltet. Im Sommer-Shutdown stehen Austausch und Überarbeitung wichtiger Komponenten im Speicherringtunnel an. Dabei beginnen auch die ersten Umbauarbeiten für das Projekt BESSY VSR. Der Ausbau von BESSY II zu einem Variablen-Pulslängen-Speicherring (BESSY VSR) wird Forschenden weltweit einzigartige Experimentierbedingungen ermöglichen. Der Shutdown endet am 30. September 2018, der Nutzerbetrieb beginnt am 30. Oktober 2018.

Für das VSR-Projekt bauen die HZB-Mitarbeitenden während des Shutdowns den Multipol-Wellenlängenschieber, die beiden Beamlines für EDDI und MagS sowie die Strahlenschutzhütten vollständig ab. Dieser Platz wird benötigt, um die Kälteversorgung für die supraleitenden Kavitäten im Speicherring aufzubauen. Sie sind Schlüsselkomponenten, um BESSY VSR zu realisieren. Für ihre Kühlung braucht man eine aufwendige Infrastruktur, die in den nächsten zwei Jahren in der Experimentierhalle aufgebaut wird.

Darüber hinaus stehen weitere Arbeiten während des Shutdowns an: Mitarbeiter aus dem Institut für Beschleunigerphysik bauen eine Diagnose-Beamline für BESSY VSR in der Nähe der EMIL-Hütte auf. Außerdem werden die beiden Wellenlängenschieber überarbeitet und weitere Komponenten (Landau-Kavitäten und ein CPMU17) für das EMIL-Labor eingebaut. Zudem entsteht ein Labor für elektrochemische Untersuchungen an Fest-Flüssig-Grenzflächen (BElChem) an BESSY II.

Einen detaillierten Einblick in die Arbeiten rund um den Shutdown gibt es im HZB-Campusblog

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.