Shutdown BESSY II: Die Arbeiten haben begonnen

<div id="infowindow_7baf4b2e2c_2d5f6a_2d11d2_2d8f20_2d0000c0e166dc_7d" class="infowindow_7baf4b2e2c_2d5f6a_2d11d2_2d8f20_2d0000c0e166dc_7d infoValueContainer">
<div class="readOnlyInfoValue">Blick in die Experimentierhalle von BESSY II. HZB / D.Butensch&ouml;n&nbsp;</div>
</div>

Blick in die Experimentierhalle von BESSY II. HZB / D.Butenschön 

Ab 30. Juli 2018 wird BESSY II für mehrere Wochen abgeschaltet. Im Sommer-Shutdown stehen Austausch und Überarbeitung wichtiger Komponenten im Speicherringtunnel an. Dabei beginnen auch die ersten Umbauarbeiten für das Projekt BESSY VSR. Der Ausbau von BESSY II zu einem Variablen-Pulslängen-Speicherring (BESSY VSR) wird Forschenden weltweit einzigartige Experimentierbedingungen ermöglichen. Der Shutdown endet am 30. September 2018, der Nutzerbetrieb beginnt am 30. Oktober 2018.

Für das VSR-Projekt bauen die HZB-Mitarbeitenden während des Shutdowns den Multipol-Wellenlängenschieber, die beiden Beamlines für EDDI und MagS sowie die Strahlenschutzhütten vollständig ab. Dieser Platz wird benötigt, um die Kälteversorgung für die supraleitenden Kavitäten im Speicherring aufzubauen. Sie sind Schlüsselkomponenten, um BESSY VSR zu realisieren. Für ihre Kühlung braucht man eine aufwendige Infrastruktur, die in den nächsten zwei Jahren in der Experimentierhalle aufgebaut wird.

Darüber hinaus stehen weitere Arbeiten während des Shutdowns an: Mitarbeiter aus dem Institut für Beschleunigerphysik bauen eine Diagnose-Beamline für BESSY VSR in der Nähe der EMIL-Hütte auf. Außerdem werden die beiden Wellenlängenschieber überarbeitet und weitere Komponenten (Landau-Kavitäten und ein CPMU17) für das EMIL-Labor eingebaut. Zudem entsteht ein Labor für elektrochemische Untersuchungen an Fest-Flüssig-Grenzflächen (BElChem) an BESSY II.

Einen detaillierten Einblick in die Arbeiten rund um den Shutdown gibt es im HZB-Campusblog

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.