Nils Mårtensson erhält Helmholtz International Fellow Award

Nils Mårtensson, Universität Uppsala, hat das Uppsala Berlin Joint Lab am HZB mit aufgebaut.

Nils Mårtensson, Universität Uppsala, hat das Uppsala Berlin Joint Lab am HZB mit aufgebaut.

Die Helmholtz-Gemeinschaft hat den schwedischen Physiker Nils Mårtensson mit einem „Helmholtz International Fellow Award“ ausgezeichnet.  Der Synchrotron-Experte der Universität Uppsala, der auch den Vorsitz des Nobelpreis-Komitees für Physik innehat, kooperiert eng mit dem  HZB und hat das Uppsala Berlin Joint Lab mit aufgebaut.

Lesen Sie hier ein Porträt über Nils Martensson, in dem er über die Arbeit des Nobel-Komitees und über die Atmosphäre und die Forschungsmöglichkeiten am BESSY II@HZB spricht. Dort gibt es nun Untersuchungsmethoden für funktionale Materialien, die es nach Einschätzung Martenssons „an keiner anderen Forschungseinrichtung gibt“.

Nils Mårtensson ist Professor an der Universität Uppsala, er hat als Direktor 13 Jahre lang den Aufbau der schwedischen Synchrotron-Strahlungsquelle Max IV geleitet und 2013 einen Grant des European Research Councils (ERC) eingeworben. Er ist Mitglied der Schwedischen Akademie der Wissenschaften und Vorsitzender des Nobel-Komitees für Physik. Am HZB arbeitet Mårtensson eng mit dem Team um Alexander Föhlisch am HZB-Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung zusammen. Gemeinsam mit Föhlisch leitet er das Uppsala Berlin Joint Laboratory (UBjL), um Methoden und Instrumente für die Forschung an Synchrotronquellen weiter zu entwickeln.

Insgesamt hat die Helmholtz-Gemeinschaft in dieser Ausschreibungsrunde fünf herausragende internationale Wissenschaftlerinnen und Wissenschaftler mit einem Helmholtz International Fellow Award ausgezeichnet. Alle haben bereits eng mit Helmholtz-Zentren zusammengearbeitet und konkrete Pläne zur Fortsetzung der Kooperation vorgelegt. „Wir hoffen natürlich, dass sie auch Botschafter für weitere Kooperationen zwischen ihren Einrichtungen und der Helmholtz-Gemeinschaft sein werden“, sagt Otmar D. Wiestler, der Präsident der Helmholtz-Gemeinschaft. 

 

Zur Presseinformation der Helmholtz-Gemeinschaft

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.