Silizium-Heterojunction-Solarzelle erzielt 23,1 Prozent Wirkungsgrad

Silizium-Heterojunction-Solarzelle, entwickelt vom PVcomB.

Silizium-Heterojunction-Solarzelle, entwickelt vom PVcomB.

Forschende am Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik Berlin (PVcomB) haben Silizium-Heterojunction (SHJ)-Solarzellen mit einem zertifizierten Wirkungsgrad von über 23 Prozent (auf 4 cm² Zellfläche) entwickelt. Dieses Ergebnis präsentierte Dr. Anna Morales vom PVcomB auf der Photovoltaik-Weltkonferenz (WCPEC-7) im Juni 2018 in Hawaii.

Als Kontaktmaterial (TCO) verwendete das Team sowohl Zinkoxid (23.0 Prozent) als auch Indiumoxid (23.1 Prozent), wobei Zinkoxid kostengünstiger und deutlich verfügbarer als das übliche Indiumoxid ist. Gemessen wurden die Werte am unabhängigen, akkreditierten Prüflabor CalTeC am Institut für Solarenergieforschung (ISFH).

Die SHJ-Solarzelle verbindet die Vorteile kristalliner Silizium-Solarzellen mit denen von Dünnschichttechnologien. Die Solarzellen erzielen höhere Wirkungsgrade bei gleichzeitig geringeren Produktionskosten.

Das PVcomB am HZB entwickelt Silizium-Heterojunction-Solarzellen mit verschiedenen Industriepartnern, um Materialien und Prozesse zu verbessern, die industriell einsetzbar sind. Die hohen Wirkungsgrade hat das Team vor allem durch Optimierung der TCO-Kontakte sowie der Silizium-Passivierungsschichten des industriellen Baseline-Prozesses am PVcomB erzielt.

Rekordwerte am PVcomB und HySPRINT

Kürzlich erreichten Tandemsolarzellen aus einer Silizium-Heterojunction-Solarzelle als Bottomzelle und einer Perowskit-Zelle als Topzelle zertifizierte Rekordwerte von über 25 Prozent (siehe Pressemeldung vom 14.6.2018). Die Perowskit-Solarzelle wurde in Kooperation mit dem Helmholtz Innovation Lab HySPRINT hergestellt.

Diese Ergebnisse  belegt die führende Rolle des HZB in Europa und weltweit bei diesen Technologien.

(bs)


Das könnte Sie auch interessieren

  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.