HZB-Experten stellen Kooperationsmöglichkeiten auf der Intersolar Europe in München vor

Zukunftstechnologie Tandemsolarzellen: Solarzellen, in denen Silizium- und Perowskit-Schichten miteinander kombiniert werden, könnten bis zu 30 Prozent Energie in Strom umwandeln.

Zukunftstechnologie Tandemsolarzellen: Solarzellen, in denen Silizium- und Perowskit-Schichten miteinander kombiniert werden, könnten bis zu 30 Prozent Energie in Strom umwandeln.

Wie beeinflußen Umwelteinflüsse die Leistung von Solarmodulen? Das Kompetenzzentrum für Photovoltaik (PVcomB) untersucht diese Frage am Outdoor-Teststand.

Wie beeinflußen Umwelteinflüsse die Leistung von Solarmodulen? Das Kompetenzzentrum für Photovoltaik (PVcomB) untersucht diese Frage am Outdoor-Teststand.

Die internationale Messe „Intersolar“ bringt Photovoltaik-Forschung und Solarindustrie zusammen. Das ist eine ideale Gelegenheit für die Forscherinnen und –Forscher des Helmholtz-Zentrum Berlin, Dünnschicht-Photovoltaiktechnologien und Projekte unter anderem zu Perowskit-Solarzellen und Tandemsolarzellen vorzustellen.

Die Intersolar Europe (20. bis 22. Juni) ist eine der wichtigsten internationalen Fachmessen für die Solarwirtschaft. Hier informieren sich Hersteller, Händler und Dienstleister über neue Entwicklungen. In Halle A2, Stand 572, stellt ein Team aus dem Helmholtz-Zentrum Berlin (HZB) vor, an welchen Themen das HZB im Bereich der erneuerbaren Energien forscht. Wichtige Anlaufstellen für die Industrie sind dabei das Helmholtz-Innovation Lab HySPRINT und das Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik Berlin (PVcomB). Beide Einrichtungen fördern den Technologietransfer und stehen auf der Messe für Fragen zur Verfügung.

Das Helmholtz Innovation Lab HySPRINT ist darauf ausgelegt, neue Materialkombinationen und Prozesse für die Energieumwandlung zu entwickeln und zu testen. Im Fokus stehen Materialien auf Basis von Silizium und metallorganischen Perowskit-Kristallen. Sie können zu hybriden Tandemzellen kombiniert werden, aber auch bei der solaren Wasserstoffgewinnung Verwendung finden. Der hochmoderne Gerätepark des HySPRINT Lab steht auch externen Nutzergruppen und Industriepartnern offen.  

Am Kompetenzzentrum Photovoltaik PVcomB entwickeln HZB-Teams zusammen mit der Industrie Dünnschicht-Photovoltaiktechnologien und -produkte, insbesondere zu CIGS- und Silizium-PV. Gemeinsame Forschungsprojekte mit Partnern aus der Industrie haben bereits zu einer Reihe erfolgreicher Innovationen geführt.

Die Forschung an neuen Materialsystemen für die Photovoltaik ist ein wichtiger Schwerpunkt am HZB. Das Zentrum ist spezialisiert auf so genannte Energiematerialien, die Energie umwandeln oder speichern. Dazu zählen Solarzellen, Materialsysteme für die Erzeugung von solarem Wasserstoff mit Sonnenlicht, aber auch magnetische Materialsysteme, die eine energieeffiziente Verarbeitung von Daten ermöglichen. Dabei liegt der Fokus auf der Untersuchung von Grenzflächen, Oberflächen und innerhalb dünner Schichten, wofür die Photonenquelle BESSY II und eine Reihe von CoreLabs mit modernen Geräteparks zur Verfügung stehen.

Der Stand des HZB befindet sich in Halle A2, Stand 572 (A2.572)

Die Messe findet vom 20. bis 22. Juni 2017 in München statt.

Weitere Informationen

- zu HySPRINT

- zum PVcomB

- zur INTERSOLAR EUROPE

 

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.