HZB-Forscherin gewinnt Dissertationspreis auf der Frühjahrstagung der Deutschen-Physikalischen Gesellschaft
Dr. Nele Thielemann-Kühn hat den Innomag Dissertationspreis 2018 erhalten. © Privat
Dr. Nele Thielemann-Kühn hat auf der Frühjahrstagung der Deutschen Physikalischen Gesellschaft (DPG) in Berlin den Dissertationspreis der AG Magnetismus erhalten. Der „INNOMAG e.V. Dissertationspreis 2018 zeichnet herausragende Forschung auf dem Gebiet des Magnetismus aus.
Dr. Nele Thielemann-Kühn hat während ihrer Promotion an der Universität Potsdam am Helmholtz-Zentrum Berlin die ultraschnelle magnetische Dynamik in ferro- und antiferromagnetischem Dysprosium untersucht. Dabei hat sie an BESSY II Experimente mit ultrakurzen Röntgenpulsen durchgeführt. Für ihre Doktorarbeit, die am HZB von Dr. Christian Schüßler-Langeheine betreut wurde, erhielt sie bereits den Ernst-Eckhard-Koch-Preis 2017. Nun setzt sie ihre wissenschaftliche Arbeit an der Freien Universität Berlin fort.
Ergebnisse aus dieser Disseration wurden u.a. publiziert in Physical Review Letters (06 November 2017): Ultrafast and energy-efficient quenching of spin order: Antiferromagnetism beats ferromagnetism; Nele Thielemann-Kühn, Daniel Schick, Niko Pontius, Christoph Trabant, Rolf Mitzner, Karsten Holldack, Hartmut Zabel, Alexander Föhlisch, Christian Schüßler-Langeheine
DOI: 10.1103/PhysRevLett.119.197202
Hervorgehoben als Focus story in "Physics": Quick Changes in Magnetic Materials
Dazu die Webmeldung des HZB: Informationstechnologien der Zukunft: Antiferromagnetisches Dysprosium zeigt magnetisches Schalten mit weniger Energie.
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14795;sprache=en),
- Link kopieren
-
Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
-
Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
-
Katalyseforschung mit dem Röntgenmikroskop an BESSY II
Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.