Dr. Raul Garcia Diez gewinnt den Dissertationspreis Adlershof für 2017
Dr. Raul Garcia Diez erhielt den Dissertationspreis Adlershof für 2017.
Die Jury mit Nominierten und dem Preisträger, Dr. Raul Garcia Diez, (links). Foto: Matthias Brandt
Mit seinem Vortrag über die Eigenschaften von Nanopartikeln und wie sie sich an BESSY II noch genauer messen lassen, überzeugte Dr. Raul Garcia Diez die Jury und erhielt den Dissertationspreis Adlershof für 2017. Der Preis ist mit 3000 Euro dotiert, Preisstifter sind die Humboldt-Universität zu Berlin, IGAFA e. V. und die WISTA-MANAGEMENT GmbH. Garcia Diez hatte seine Promotion an der PTB und der TU Berlin abgeschlossen und forscht nun als Postdoktorand am HZB.
Nanopartikel werden zunehmend auch in der Medizin eingesetzt, zum Beispiel als Kontrastmittel für bildgebende Diagnostik oder um Wirkstoffe an den optimalen Einsatzort zu transportieren. Doch um Nanopartikel wirklich für solche Aufgaben zu entwickeln, müssen die funktionalen Eigenschaften dieser Partikeln noch deutlich besser untersucht werden.
In seiner Dissertation über die „Charakterisierung von Nanopartikeln durch kontinuierliche Kontrastvariation mit Röntgenkleinwinkelstreuung“ hat Raul Garcia Diez eine Methode entwickelt, um mit Röntgenkleinwinkelstreuung Nanopartikel in einer realitätsnahen Umgebung zu untersuchen. Die Arbeiten wurden mit dem HZB SAXS Instrument durchgeführt, welches in Kooperation zwischen PTB und HZB an der FCM-Beamline der Physikalisch-Technischen Bundesanstalt (PTB) betrieben wird.
Mit seiner Arbeit, die er an der PTB bei Prof. Dr. Matthias Richter durchgeführt hatte, promovierte er im Mai 2017 an der TU Berlin. Seit seiner Promotion ist Garcia Diez als Postdoktorand bei Prof. Dr. Marcus Bär am HZB beschäftigt.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14787;sprache=de/
- Link kopieren
-
Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
-
Katalyseforschung mit dem Röntgenmikroskop an BESSY II
Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
-
BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.