Neues Röntgenspektrometer ermöglicht es, Einzelschritte der Photosynthese zu beobachten

Schema des Photosystems II.

Schema des Photosystems II. © SLAC

HZB Wissenschaftler haben an BESSY II ein neuartiges Spektrometer entwickelt, das detaillierte Einblicke in Katalyse-Prozesse an Metall-Enzymen ermöglicht. In internationaler Zusammenarbeit gelang es ihnen, einzelne Prozesse im Photosystem II aufzuklären. Ihre Studie haben sie nun in der Zeitschrift Structural Dynamics veröffentlicht. Das Photosystem II gehört zur Photosynthese, die u.a. in Pflanzen und Algen stattfindet und Sonnenenergie in chemische Energie umwandelt.

Das Photosystem II ist ein großer Proteinkomplex, in dessen Zentrum vier Mangan-Atome und ein Calcium-Atom sitzen. Sonnenlicht setzt in diesem Proteinkomplex einen Prozess in Gang, der  Wasser in Sauerstoff, Protonen und Elektronen aufspaltet, mit deren Hilfe wiederum die für das Leben auf der Erde essentiellen Kohlehydrate erzeugt werden.

Eine der großen Herausforderungen bei der Aufklärung dieses Prozesses ist es, die einzelnen Zwischenschritte experimentell zu beobachten. Bislang war es insbesondere nicht möglich, Röntgenspektroskopie an Photosystem II im für BESSY II charakteristischen Energiebereich der sogenannten weichen Röntgenstrahlung durchzuführen. Denn die erwarteten Signale sind sehr klein und biologische Proben sind sehr empfindlich für Strahlenschäden. „Bisher war es nicht möglich, die Mangan-Atome experimentell "abzutasten"“, erklärt Dr. Philippe Wernet vom HZB.

Nun konnte eine internationale Kooperation mit dem HZB und mit führenden Gruppen der Photosystem II Forschung um Junko Yano in Berkeley, USA, und anderen in den USA, Schweden und Frankreich am Freien Elektronenlaser LCLS in Stanford, USA, einen deutlichen Fortschritt erreichen.

Spektrometer aus dem HZB

Dafür setzten sie ein neuartiges Spektrometer ein, das am HZB entwickelt und getestet wurde. Es enthält eine ebenfalls am HZB entwickelte Reflexionszonenplatte als „Linse“ für das Röntgenlicht. Damit war es erstmals möglich, organische Metall-Enzyme bei ihren geringen Konzentrationen in Lösung, also in ihrer natürlichen Umgebung, mit weicher Röntgenstrahlung zu untersuchen.

Zwei Zwischenschritte bei der Wasserspaltung

Insbesondere interessierten sich die Forschungsteams dafür, wie sich die elektronische Struktur der Mangan-Atome verändert, die im Zentrum des Enzyms sitzen. Denn darüber lassen sich die Zwischenschritte bis zur Wasserspaltung gut identifizieren. Tatsächlich konnten sie zeigen, dass die neue Methode geeignet ist, die Mangan-Atome im Photosystem II direkt abzutasten. Damit konnten sie bereits zwei Zwischenschritte dingfest machen.

„Mit unserer Methode können wir genau untersuchen, wie die Natur es anstellt, u.a. in Blättern oder Algen so erfolgreich Sonnenenergie in chemische Energie umzuwandeln“, sagt Markus Kubin, HZB, Erstautor der Studie, die im September in der Zeitschrift Structural Dynamics veröffentlicht wurde.

Spektrometer auch für andere Katalysatorkomplexe geeignet

Mit dem neu entwickelten Spektrometer lassen sich auch andere empfindliche Katalysatorkomplexe in biologischen oder technischen Systemen untersuchen.

 

Zur Publikation in Structural Dynamics 4, 054307 (2017);Soft X-ray Absorption Spectroscopy of Metalloproteins and High-Valent Metal-Complexes at Room Temperature Using Free-Electron Lasers; Markus Kubin, Jan Kern, Sheraz Gul, Thomas Kroll, Ruchira Chatterjee, Heike Löchel, Franklin D. Fuller, Raymond G. Sierra, Wilson Quevedo, Christian Weniger, Jens Rehanek, Anatoly Firsov, Hartawan Laksmono, Clemens Weninger, Roberto Alonso-Mori, Dennis L. Nordlund, Benedikt Lassalle-Kaiser, James M. Glownia, Jacek Krzywinski, Stefan Moellerc, Joshua J. Turnerc, Michael P. Minittic, Georgi L. Dakovskic, Sergey Koroidovf,h, Anurag Kawdeh, Jacob S. Kanady, Emily Y. Tsui, Sandy Suseno, Zhiji Han, Ethan Hill, Taketo Taguchi, Andrew S. Borovik, Theodor Agapie, Johannes Messinger, Alexei Erko, Alexander Föhlisch, Uwe Bergmann, Rolf Mitzner, Vittal K. Yachandra, Junko Yano, Philippe Wernet

doi: 10.1063/1.4986627

 

red./arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.