LEAPS – Europas Lichtquellen entwickeln sich gemeinsam weiter für die Spitzenforschung

Für das HZB mit der Lichtquelle BESSY II nahm Prof. Bernd Rech an dem LEAPS-Treffen teil.

Für das HZB mit der Lichtquelle BESSY II nahm Prof. Bernd Rech an dem LEAPS-Treffen teil.

Die Aufnahme zeigt die Direktorinnen und Direktoren der an LEAPS beteiligten Lichtquellen. Bild. Diamond Light Source

Die Aufnahme zeigt die Direktorinnen und Direktoren der an LEAPS beteiligten Lichtquellen. Bild. Diamond Light Source

In Brüssel hat sich ein neuer strategischer Zusammenschluss der europäischen Forschungslichtquellen gegründet. Ziel des LEAPS-Konsortiums (League of European Accelerator-based Photon Sources) ist es, die europäische Kooperation dieser „Supermikroskope“ auf eine neue Ebene zu heben, um mit der geballten wissenschaftlichen Exzellenz globale Herausforderungen zu lösen sowie die europäische Wettbewerbsfähigkeit und Integration zu stärken. Vertreter von 16 Institutionen legten dazu im Beisein des Generaldirektors für Forschung und Innovation der Europäischen Union, Robert-Jan Smits, eine gemeinsame Erklärung vor.

„Licht aus Teilchenbeschleunigern spielt heute für Untersuchungen in nahezu jedem naturwissenschaftlichen Bereich eine entscheidende Rolle – von Physik, Chemie und Biologie über Energie, Medizin und Verkehr bis hin zu kulturgeschichtlichen Studien“, sagt Prof. Helmut Dosch, DESY-Direktor und Vorsitzender des Konsortiums. „Bisher wurden die Lichtquellen in den verschiedenen Ländern im Wesentlichen unabhängig voneinander entwickelt und betrieben. Doch sie haben eine Menge gemeinsam, denn die meisten ihrer wissenschaftlichen Zielsetzungen sind sehr ähnlich.“

„Am Helmholtz-Zentrum Berlin betreiben wir mit BESSY II eine Synchrotronlichtquelle, die auf den weichen Röntgenbereich spezialisiert ist“, erklärt Prof. Bernd Rech, der das HZB kommissarisch leitet. „Damit sind wir bewusst komplementär zu anderen Synchrotronquellen in Deutschland und Europa, die vorwiegend harte Röntgenstrahlung erzeugen.“  

Mit weicher Röntgenstrahlung lassen sich empfindliche Prozesse an Oberflächen und Grenzflächen von Dünnschichtmaterialien untersuchen und chemische Bindungen analysieren. Auch feinste magnetische Strukturen innerhalb von dünnen Schichten können sichtbar gemacht werden. Schwerpunkte der Forschung an BESSY II sind Energiematerialien, von Solarzellen der nächsten Generation über katalytische Systeme bis hin zu magnetischen Materialien für neue, energieeffiziente Informationstechnologien.

„Das HZB engagiert sich mit voller Überzeugung in LEAPS. Indem wir eng zusammenarbeiten, auch bei der Weiterentwicklung von beschleunigerbasierten Lichtquellen, können wir in Europa die besten Bedingungen für die Forschung mit Licht schaffen“, sagt Rech. Auch die Zukunftsprojekte am HZB zur Weiterentwicklung von BESSY II, nämlich BESSY VSR und BERLinPro sind auf die europäische Forschungslandschaft abgestimmt.

Die neue Form der Zusammenarbeit zwischen den beteiligten Einrichtungen soll sicherstellen, dass die großen europäischen Forschungsinfrastrukturen künftig noch effizienter genutzt werden und dass große wissenschaftliche und technologische Herausforderungen gemeinsam angegangen werden.

In LEAPS haben sich 16 Institutionen aus zehn europäischen Ländern zusammengeschlossen, die einer Gemeinschaft von mehr als 24 000 Forscherinnen und Forschern mit einem breit gefächerten Themenspektrum dienen. Davon profitieren nicht nur Grundlagen- und anwendungsorientiere Forschung, sondern auch die industrielle Forschung an beschleunigerbasierten Lichtquellen.

  • Link kopieren

Das könnte Sie auch interessieren

  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.