Topologische Isolatoren: Neuer Phasenübergang entdeckt

Der Bismut-Anteil nimmt von 0% (links) auf 2,2% (rechts) zu. Dadurch entsteht eine so genannte Bandl&uuml;cke in den Energieniveaus der Elektronen, zeigen die Messungen an BESSY II. </p>
<p>

Der Bismut-Anteil nimmt von 0% (links) auf 2,2% (rechts) zu. Dadurch entsteht eine so genannte Bandlücke in den Energieniveaus der Elektronen, zeigen die Messungen an BESSY II.

© HZB

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen und spannenden Materialklasse zählen auch Halbleiter aus Blei, Zinn und Selen, die zusätzlich mit winzigen Mengen Bismut versetzt sind. Das HZB-Team untersuchte einkristalline Schichten mit dieser Zusammensetzung und variierte dabei die Dotierung mit dem Element Bismut. Bei einer Dotierung mit 1 bis 2 Prozent Bismut konnten sie einen neuartigen topologischen Phasenübergang beobachten. Die Proben wechseln zu einer bestimmten topologischen Phase, die zusätzlich die Eigenschaft der Ferroelektrizität besitzt. Das bedeutet, dass ein äußeres elektrisches Feld das Kristallgitter verformt, während umgekehrt mechanischer Druck auf den Kristall elektrische Felder erzeugt.

Dieser Effekt ist für Anwendungen interessant. Solche ferroelektrischen Phasenwechselmaterialien werden beispielsweise in DVDs und Flash-Speichern verwendet. Dort verschiebt eine angelegte elektrische Spannung Atome im Kristallgitter, was aus einem Isolator ein Metall macht.

„Die Dotierung mit Bismut, die wir in der PbSnSe-Schicht untersucht haben, wirkt offenbar als Störung. Bismut ist dafür bekannt, dass seine Elektronenzahl nicht gut zu einer Kristallstruktur wie der von PbSnSe passt, so dass dieser faszinierende Phasenübergang auftritt“, erklärt Dr. Jaime Sánchez-Barriga, der für das Projekt zuständige Forscher.

Nach detaillierten Auswertungen der Messungen blieb nur eine Schlussfolgerung übrig: die Dotierung mit Bismut führt offenbar zu einer ferroelektrischen Verzerrung des Kristallgitters, die auch die erlaubten Energieniveaus der Elektronen ändert. "Die Messergebnisse haben uns über mehrere Experimentierreihen Rätsel aufgegeben, bis sich die Ergebnisse schließlich an einem ganz neuen Satz von Proben perfekt reproduzieren ließen", fügt Sánchez-Barriga hinzu.

"Ferroelektrische Phasen könnten hier zu Anwendungen führen, an die bislang nicht zu denken war. Verlustfreie elektrische Leitung in topologischen Materialien könnte sich nach Belieben an- und ausschalten lassen, durch Spannungspulse oder auch mechanische Spannungen", erklärt Prof. Oliver Rader, der am HZB die Abteilung Materialien für grüne Spintronik leitet.

Publication in Nature communications (2017): Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
Partha S. Mandal, Gunther Springholz, Valentine V. Volobuev, Ondrei Caha, Andrei Varykhalov, Evangelos Golias, Günther Bauer, Oliver Rader, Jaime Sánchez-Barriga

doi: 10.1038/s41467-017-01204-0

Hinweis: Die Untersuchungen wurden in enger Zusammenarbeit mit Forschern der Johannes-Kepler-Universität Linz durchgeführt, die auch die Proben hergestellt haben. Partha S. Mandal, der seine Doktorarbeit über die Messungen schreibt, wurde vom Helmholtz Virtual Institute "New States of Matter and their Excitations" finanziert.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.
  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • "BESSY ist für Berlin von immenser Bedeutung"
    Nachricht
    02.09.2024
    "BESSY ist für Berlin von immenser Bedeutung"
    Ende August hat die Senatorin für Wissenschaft, Gesundheit und Pflege, Dr. Ina Czyborra gemeinsam mit dem Staatssekretär für Wissenschaft, Dr. Henry Marx, ihre Sommertour mit einem Besuch am HZB in Adlershof beendet. Dabei bekannte sie sich öffentlich dazu, den Neubau von BESSY III politisch zu unterstützen.